四川省遂宁城区五校联考2022年十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.化简的结果是( )
A.±4 B.4 C.2 D.±2
2.如图是由5个相同的正方体搭成的几何体,其左视图是( )
A. B.
C. D.
3.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).
A.1 B.2 C.3 D.4
4.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于( )
A.75° B.90° C.105° D.115°
5.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )
A.1 B.-6 C.2或-6 D.不同于以上答案
6.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
7.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
A.③ B.①③ C.②④ D.①③④
8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则△ABD的面积是( )
A.18 B.36 C.54 D.72
9.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12 B.8 C.4 D.3
10.计算 的结果为( )
A.1 B.x C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:=___________.
12.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.
13.如图,在△ABC中,AB=3+,∠B=45°,∠C=105°,点D、E、F分别在AC、BC、AB上,且四边形ADEF为菱形,若点P是AE上一个动点,则PF+PB的最小值为_____.
14.一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数是______.
15.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)
16.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.
17.化简:_____________.
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:(1﹣)÷,其中x=1.
19.(5分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.
(1)判断四边形ACBD的形状,并说明理由;
(2)求证:ME=AD.
20.(8分)如图,在Rt△ABC中,CD,CE分别是斜边AB上的高,中线,BC=a,AC=b.若a=3,b=4,求DE的长;直接写出:CD= (用含a,b的代数式表示);若b=3,tan∠DCE=,求a的值.
21.(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?
22.(10分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有 名;
(2)所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;
(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
23.(12分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
24.(14分)自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如: <0等。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
若a>0,b>0,则>0;若a<0,b<0,则>0;
若a>0,b<0,则<0;若a<0,b>0,则<0.
反之:若>0,则 或 ,
(1)若<0,则___或___.
(2)根据上述规律,求不等式 >0的解集.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据算术平方根的意义求解即可.
【详解】
4,
故选:B.
【点睛】
本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.
2、A
【解析】
根据三视图的定义即可判断.
【详解】
根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.
【点睛】
本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.
3、C
【解析】
∵EF⊥AC,点G是AE中点,
∴OG=AG=GE=AE,
∵∠AOG=30°,
∴∠OAG=∠AOG=30°,
∠GOE=90°-∠AOG=90°-30°=60°,
∴△OGE是等边三角形,故(3)正确;
设AE=2a,则OE=OG=a,
由勾股定理得,AO=,
∵O为AC中点,
∴AC=2AO=2,
∴BC=AC=,
在Rt△ABC中,由勾股定理得,AB==3a,
∵四边形ABCD是矩形,
∴CD=AB=3a,
∴DC=3OG,故(1)正确;
∵OG=a,BC=,
∴OG≠BC,故(2)错误;
∵S△AOE=a•=,
SABCD=3a•=32,
∴S△AOE=SABCD,故(4)正确;
综上所述,结论正确是(1)(3)(4)共3个,
故选C.
【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.
4、C
【解析】
分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.
详解:∵AB∥EF,
∴∠BDE=∠E=45°,
又∵∠A=30°,
∴∠B=60°,
∴∠1=∠BDE+∠B=45°+60°=105°,
故选C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
5、C
【解析】
解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;
②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.
故选C.
点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.
6、B
【解析】
分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
7、A
【解析】
设
(1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;
(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;
(3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
(4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
综上所述,四种说法中正确的是③.
故选A.
8、B
【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DH,再由三角形的面积公式可得出结论.
【详解】
由题意可知AP为∠CAB的平分线,过点D作DH⊥AB于点H,
∵∠C=90°,CD=1,
∴CD=DH=1.
∵AB=18,
∴S△ABD=AB•DH=×18×1=36
故选B.
【点睛】
本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
9、C
【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
【详解】
延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选C.
【点睛】
本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
10、A
【解析】
根据同分母分式的加减运算法则计算可得.
【详解】
原式===1,
故选:A.
【点睛】
本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
直接利用完全平方公式分解因式得出答案.
【详解】
解:=,
故答案为.
【点睛】
此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.
12、24
【解析】
试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;
考点:三角函数、菱形的性质及勾股定理;
13、
【解析】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四边形ADEF是菱形,推出F,D关于直线AE对称,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是线段BD的长.
【详解】
如图,连接OD,BD,作DH⊥AB于H,EG⊥AB于G.
∵四边形ADEF是菱形,
∴F,D关于直线AE对称,
∴PF=PD,
∴PF+PB=PA+PB,
∵PD+PB≥BD,
∴PF+PB的最小值是线段BD的长,
∵∠CAB=180°-105°-45°=30°,设AF=EF=AD=x,则DH=EG=x,FG=x,
∵∠EGB=45°,EG⊥BG,
∴EG=BG=x,
∴x+x+x=3+,
∴x=2,
∴DH=1,BH=3,
∴BD==,
∴PF+PB的最小值为,
故答案为.
【点睛】
本题考查轴对称-最短问题,菱形的性质等知识,解题的关键是学会用转化的思想思考问题,学会利用轴对称解决最短问题.
14、7
【解析】
根据多边形内角和公式得:(n-2) .得:
15、5
【解析】
如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.
【详解】
如图,作BH⊥AC于H.
在Rt△ABH中,∵AB=10海里,∠BAH=30°,
∴∠ABH=60°,BH=AB=5(海里),
在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),
∴BH=CH=5海里,
∴CB=5(海里).
故答案为:5.
【点睛】
本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.
16、8π﹣8
【解析】
连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.
【详解】
连接EF、OC交于点H,
则OH=2,
∴FH=OH×tan30°=2,
∴菱形FOEC的面积=×4×4=8,
扇形OAB的面积==8π,
则阴影部分的面积为8π﹣8,
故答案为8π﹣8.
【点睛】
本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.
17、
【解析】
根据分式的运算法则即可求解.
【详解】
原式=.
故答案为:.
【点睛】
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
三、解答题(共7小题,满分69分)
18、.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
【详解】
原式==
当x=1时,原式=.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
19、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.
【解析】
(1)根据题意得出,即可得出结论;
(2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.
【详解】
(1)解:四边形ACBD是菱形;理由如下:
根据题意得:AC=BC=BD=AD,
∴四边形ACBD是菱形(四条边相等的四边形是菱形);
(2)证明:∵DE∥AB,BE∥CD,
∴四边形BEDM是平行四边形,
∵四边形ACBD是菱形,
∴AB⊥CD,
∴∠BMD=90°,
∴四边形ACBD是矩形,
∴ME=BD,
∵AD=BD,
∴ME=AD.
【点睛】
本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.
20、(1);(2);(3).
【解析】
(1)求出BE,BD即可解决问题.
(2)利用勾股定理,面积法求高CD即可.
(3)根据CD=3DE,构建方程即可解决问题.
【详解】
解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,
∴.
∵CD,CE是斜边AB上的高,中线,
∴∠BDC=91°,.
∴在Rt△BCD中,
(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,
故答案为:.
(3)在Rt△BCD中,,
∴,
又,
∴CD=3DE,即.
∵b=3,
∴2a=9﹣a2,即a2+2a﹣9=1.
由求根公式得(负值舍去),
即所求a的值是.
【点睛】
本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
【解析】
(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;
(2)根据每千克售价乘以销量等于销售总金额,求出即可;
(3)利用总售价-成本-费用=利润,进而求出即可.
【详解】
根据题意知,;
.
当时,最大利润12500元,
答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
【点睛】
此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.
22、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
【解析】
(1)用总人数50减去其它部门的人数;
(2)根据中位数和众数的定义求解即可;
(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
【详解】
(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
在这些数中1600元出现的次数最多,因而众数是1600元;
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合理些.
(4)(元).
能反映该公司员工的月工资实际水平.
23、(1);(2);(3)最多获利4480元.
【解析】
(1)销售量y为200件加增加的件数(80﹣x)×20;
(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;
(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.
【详解】
(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,
所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);
(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,
所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:
W=﹣20x2+3000x﹣108000;
(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,
w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,
∵a=﹣20<0,
∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,
∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).
所以商场销售该品牌童装获得的最大利润是4480元.
【点睛】
二次函数的应用.
24、(1) 或;(2)x>2或x<−1.
【解析】
(1)根据两数相除,异号得负解答;
(2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.
【详解】
(1)若>0,则 或 ;
故答案为: 或;
(2)由上述规律可知,不等式转化为或,
所以,x>2或x<−1.
【点睛】
此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.
山东省济南市钢城区实验校2021-2022学年十校联考最后数学试题含解析: 这是一份山东省济南市钢城区实验校2021-2022学年十校联考最后数学试题含解析,共21页。试卷主要包含了下列判断错误的是等内容,欢迎下载使用。
2022年四川省简阳市简城区、镇金区十校联考最后数学试题含解析: 这是一份2022年四川省简阳市简城区、镇金区十校联考最后数学试题含解析,共19页。试卷主要包含了下列各数中,最小的数是等内容,欢迎下载使用。
2022届江苏省苏南五市联考十校联考最后数学试题含解析: 这是一份2022届江苏省苏南五市联考十校联考最后数学试题含解析,共28页。试卷主要包含了考生必须保证答题卡的整洁,下列实数为无理数的是等内容,欢迎下载使用。