开学活动
搜索
    上传资料 赚现金

    四川省遂宁二中学2022年中考数学全真模拟试卷含解析

    四川省遂宁二中学2022年中考数学全真模拟试卷含解析第1页
    四川省遂宁二中学2022年中考数学全真模拟试卷含解析第2页
    四川省遂宁二中学2022年中考数学全真模拟试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省遂宁二中学2022年中考数学全真模拟试卷含解析

    展开

    这是一份四川省遂宁二中学2022年中考数学全真模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )

    A.3 B.3.2 C.4 D.4.5
    2.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为(  )

    A. B. C. D.
    3.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是(  )
    用水量x(吨)
    3
    4
    5
    6
    7
    频数
    1
    2
    5
    4﹣x
    x
    A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
    4.方程x2﹣3x+2=0的解是(  )
    A.x1=1,x2=2 B.x1=﹣1,x2=﹣2
    C.x1=1,x2=﹣2 D.x1=﹣1,x2=2
    5.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(  )
    A.10cm B.30cm C.45cm D.300cm
    6.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为(  )
    A. B.2 C.2 D.4
    7.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是(  )

    A. B. C. D.
    8.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为(  )

    A.25° B.30° C.35° D.40°
    9.数据4,8,4,6,3的众数和平均数分别是( )
    A.5,4 B.8,5 C.6,5 D.4,5
    10.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(    )
    A.15                               B.12                               C.9                        D.6
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知ab=﹣2,a﹣b=3,则a3b﹣2a2b2+ab3的值为_______.
    12.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.
    13.一组数:2,1,3,,7,,23,…,满足“从第三个数起,前两个数依次为、,紧随其后的数就是”,例如这组数中的第三个数“3”是由“”得到的,那么这组数中表示的数为______.
    14.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.

    15.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .

    16.分解因式:(2a+b)2﹣(a+2b)2= .
    三、解答题(共8题,共72分)
    17.(8分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
    (1)问题发现
    ①当θ=0°时,= ;
    ②当θ=180°时,= .
    (2)拓展探究
    试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
    (3)问题解决
    ①在旋转过程中,BE的最大值为 ;
    ②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .

    18.(8分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.
    如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.
    (1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;
    (2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?

    19.(8分)列方程解应用题
    八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.
    20.(8分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.
    (1)实践操作:尺规作图,不写作法,保留作图痕迹.
    ①作∠ABC的角平分线交AC于点D.
    ②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
    (2)推理计算:四边形BFDE的面积为   .

    21.(8分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.

    22.(10分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
    23.(12分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
    (1)甲,乙两组工作一天,商店各应付多少钱?
    (2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
    (3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
    24.如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
    (1)求证:△AEF是等腰直角三角形;
    (2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
    (3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.
    2、B
    【解析】
    阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
    【详解】
    解:由旋转可知AD=BD,
    ∵∠ACB=90°,AC=2,
    ∴CD=BD,
    ∵CB=CD,
    ∴△BCD是等边三角形,
    ∴∠BCD=∠CBD=60°,
    ∴BC=AC=2,
    ∴阴影部分的面积=2×2÷2−=2−.
    故选:B.
    【点睛】
    本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.
    3、B
    【解析】
    由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
    【详解】
    ∵6吨和7吨的频数之和为4-x+x=4,
    ∴频数之和为1+2+5+4=12,
    则这组数据的中位数为第6、7个数据的平均数,即=5,
    ∴对于不同的正整数x,中位数不会发生改变,
    ∵后两组频数和等于4,小于5,
    ∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
    故选B.
    【点睛】
    本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
    4、A
    【解析】
    将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
    【详解】
    解:原方程可化为:(x﹣1)(x﹣1)=0,
    ∴x1=1,x1=1.
    故选:A.
    【点睛】
    此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
    5、A
    【解析】
    根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
    【详解】
    直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形
    假设每个圆锥容器的地面半径为

    解得
    故答案选A.
    【点睛】
    本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。
    6、B
    【解析】
    圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
    【详解】
    解:∵圆内接正六边形的边长是1,
    ∴圆的半径为1.
    那么直径为2.
    圆的内接正方形的对角线长为圆的直径,等于2.
    ∴圆的内接正方形的边长是1.
    故选B.
    【点睛】
    本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
    7、A
    【解析】
    由题意可得:△APE和△PCF都是等腰直角三角形.
    ∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.
    则y=2x,为正比例函数.
    故选A.
    8、B
    【解析】
    如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.
    【详解】
    如图,连接OA,OB,OC,OE.

    ∵∠EBC+∠EDC=180°,∠EDC=130°,
    ∴∠EBC=50°,
    ∴∠EOC=2∠EBC=100°,
    ∵AB=BC=CE,
    ∴弧AB=弧BC=弧CE,
    ∴∠AOB=∠BOC=∠EOC=100°,
    ∴∠AOE=360°﹣3×100°=60°,
    ∴∠ABE=∠AOE=30°.
    故选:B.
    【点睛】
    本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    9、D
    【解析】
    根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可
    【详解】
    ∵4出现了2次,出现的次数最多,
    ∴众数是4;
    这组数据的平均数是:(4+8+4+6+3)÷5=5;
    故选D.
    10、A
    【解析】
    根据三角函数的定义直接求解.
    【详解】
    在Rt△ABC中,∠C=90°,AC=9,
    ∵,
    ∴,
    解得AB=1.
    故选A

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣18
    【解析】
    要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.
    【详解】
    a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)
    =ab(a﹣b)2,
    当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,
    故答案为:﹣18.
    【点睛】
    本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.
    12、1
    【解析】
    根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.
    【详解】
    解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
    则1张普通贺卡为:元,
    由题意得:,

    答:剩下的钱恰好还能买1张普通贺卡.
    故答案为:1.
    【点睛】
    本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.
    13、-9.
    【解析】
    根据题中给出的运算法则按照顺序求解即可.
    【详解】
    解:根据题意,得:,.
    故答案为:-9.
    【点睛】
    本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.
    14、1≤x≤1
    【解析】
    此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;
    【详解】
    解:如图:①当F、D重合时,BP的值最小;

    根据折叠的性质知:AF=PF=5;
    在Rt△PFC中,PF=5,FC=1,则PC=4;
    ∴BP=xmin=1;
    ②当E、B重合时,BP的值最大;
    由折叠的性质可得BP=AB=1.
    所以BP的取值范围是:1≤x≤1.
    故答案为:1≤x≤1.
    【点睛】
    此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.
    15、1
    【解析】
    ∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,
    ∴由中点公式得:c=,
    ∴a+b=2c,
    ∴a+b-2c=1.
    故答案为1.
    16、3(a+b)(a﹣b).
    【解析】
    (2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)

    三、解答题(共8题,共72分)
    17、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
    【解析】
    (1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
    【详解】
    解:(1)①当θ=0°时,
    在Rt△ABC中,AC=BC=2,
    ∴∠A=∠B=45°,AB=2,
    ∵AD=DE=AB=,
    ∴∠AED=∠A=45°,
    ∴∠ADE=90°,
    ∴DE∥CB,
    ∴,
    ∴,
    ∴,
    故答案为,
    ②当θ=180°时,如图1,

    ∵DE∥BC,
    ∴,
    ∴,
    即:,
    ∴,
    故答案为;
    (2)当0°≤θ<360°时,的大小没有变化,
    理由:∵∠CAB=∠DAE,
    ∴∠CAD=∠BAE,
    ∵,
    ∴△ADC∽△AEB,
    ∴;
    (3)①当点E在BA的延长线时,BE最大,
    在Rt△ADE中,AE=AD=2,
    ∴BE最大=AB+AE=2+2;
    ②如图2,

    当点E在BD上时,
    ∵∠ADE=90°,
    ∴∠ADB=90°,
    在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
    ∴BE=BD+DE=+,
    由(2)知,,
    ∴CD=+1,
    如图3,

    当点D在BE的延长线上时,
    在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
    ∴BE=BD﹣DE=﹣,
    由(2)知,,
    ∴CD=﹣1.
    故答案为 +1或﹣1.
    【点睛】
    此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
    18、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.
    【解析】
    (1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
    (2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;
    【详解】
    (1)∵共有1种等可能的结果,落回到圈A的只有1种情况,
    ∴落回到圈A的概率P1=;
    (2)列表得:

    1
    2
    3
    1
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    2
    (1,2)
    (2,2)
    (3,2)
    (1,2)
    3
    (1,3)
    (2,3)
    (3,3)
    (1,3)
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    ∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),
    ∴最后落回到圈A的概率P2==,
    ∴她与嘉嘉落回到圈A的可能性一样.
    【点睛】
    此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.
    19、15
    【解析】
    试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.
    试题解析:
    解:设骑车学生的速度为,由题意得
    ,
    解得 .
    经检验是原方程的解.
    答: 骑车学生的速度为15.
    20、 (1)详见解析;(2).
    【解析】
    (1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;
    (2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.
    【详解】
    (1)如图,DE、DF为所作;

    (2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.
    ∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.
    ∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.
    ∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE的面积=4×2=8.
    故答案为:8.
    【点睛】
    本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
    21、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).
    【解析】
    (1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;
    (2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.
    【详解】
    (1)∵双曲线y=(m≠0)经过点A(﹣,2),
    ∴m=﹣1.
    ∴双曲线的表达式为y=﹣.
    ∵点B(n,﹣1)在双曲线y=﹣上,
    ∴点B的坐标为(1,﹣1).
    ∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
    ∴,解得
    ∴直线的表达式为y=﹣2x+1;
    (2)当y=﹣2x+1=0时,x=,
    ∴点C(,0).
    设点P的坐标为(x,0),
    ∵S△ABP=3,A(﹣,2),B(1,﹣1),
    ∴×3|x﹣|=3,即|x﹣|=2,
    解得:x1=﹣,x2=.
    ∴点P的坐标为(﹣,0)或(,0).
    【点睛】
    本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.
    22、(1)见解析
    (2)图中阴影部分的面积为π.
    【解析】
    (1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
    (2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
    【详解】
    (1)证明:连接OC.

    ∵AC=CD,∠ACD=120°,
    ∴∠A=∠D=30°.
    ∵OA=OC,
    ∴∠2=∠A=30°.
    ∴∠OCD=∠ACD-∠2=90°,
    即OC⊥CD,
    ∴CD是⊙O的切线;
    (2)解:∠1=∠2+∠A=60°.
    ∴S扇形BOC==.
    在Rt△OCD中,∠D=30°,
    ∴OD=2OC=4,
    ∴CD==.
    ∴SRt△OCD=OC×CD=×2×=.
    ∴图中阴影部分的面积为:-.
    23、(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.
    【解析】
    (1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;
    (2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;
    (3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.
    【详解】
    解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.
    由题意得:
    解得:
    答:甲、乙两组工作一天,商店各应付300元和140元
    (2)单独请甲组需要的费用:300×12=3600元.
    单独请乙组需要的费用:24×140=3360元.
    答:单独请乙组需要的费用少.
    (3)请两组同时装修,理由:
    甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;
    乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;
    甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;
    因为5120

    相关试卷

    四川省遂宁市大英县江平初中2022年中考数学全真模拟试题含解析:

    这是一份四川省遂宁市大英县江平初中2022年中考数学全真模拟试题含解析,共22页。

    2021-2022学年四川省遂宁市市城区中考数学全真模拟试题含解析:

    这是一份2021-2022学年四川省遂宁市市城区中考数学全真模拟试题含解析,共24页。试卷主要包含了答题时请按要求用笔,方程的解是,如图,点P等内容,欢迎下载使用。

    2021-2022学年四川省遂宁市安居育才中学中考数学最后冲刺模拟试卷含解析:

    这是一份2021-2022学年四川省遂宁市安居育才中学中考数学最后冲刺模拟试卷含解析,共18页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map