开学活动
搜索
    上传资料 赚现金

    四川省南充市白塔中学2022年中考数学最后一模试卷含解析

    四川省南充市白塔中学2022年中考数学最后一模试卷含解析第1页
    四川省南充市白塔中学2022年中考数学最后一模试卷含解析第2页
    四川省南充市白塔中学2022年中考数学最后一模试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省南充市白塔中学2022年中考数学最后一模试卷含解析

    展开

    这是一份四川省南充市白塔中学2022年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为(  )

    A. B. C. D.
    2.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
    ①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是(  )

    A.1 B.2 C.3 D.4
    3.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
    得分(分)
    60
    70
    80
    90
    100
    人数(人)
    7
    12
    10
    8
    3
    则得分的众数和中位数分别为(  )
    A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
    4.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是(  )

    1
    2
    3
    4
    5
    成绩(m)
    8.2
    8.0
    8.2
    7.5
    7.8
    A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0
    5.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )

    A.6 B.8 C.10 D.12
    6.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需(  )
    A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
    7.如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,,则 的度数是

    A. B. C. D.
    8.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为(  )

    A.(2,2),(3,2) B.(2,4),(3,1)
    C.(2,2),(3,1) D.(3,1),(2,2)
    9.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是

    A.点A和点C B.点B和点D
    C.点A和点D D.点B和点C
    10.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为(  )

    A.70° B.80° C.90° D.100°
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.

    12.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:
    价格/(元/kg)

    12

    10

    8

    合计/kg

    小菲购买的数量/kg

    2

    2

    2

    6

    小琳购买的数量/kg

    1

    2

    3

    6

    从平均价格看,谁买得比较划算?( )
    A.一样划算 B.小菲划算C.小琳划算 D.无法比较
    13.如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C在x轴的正半轴上,若∠ACB=90°,则点C的坐标为______.

    14.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.

    15.分解因式6xy2-9x2y-y3 = _____________.
    16.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.

    17.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.

    19.(5分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
    (1)求甲、乙两队合作完成这项工程需要多少天?
    (2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
    20.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
    21.(10分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).
    (1)求一次函数与反比例函数的解析式;
    (2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.

    22.(10分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数

    23.(12分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.

    24.(14分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.
    小明和小刚都在本周日上午去游玩的概率为________;
    求他们三人在同一个半天去游玩的概率.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
    【详解】
    解:连接OE,如图所示:

    ∵四边形ABCD是菱形,
    ∴∠D=∠B=60°,AD=AB=4,
    ∴OA=OD=2,
    ∵OD=OE,
    ∴∠OED=∠D=60°,
    ∴∠DOE=180°﹣2×60°=60°,
    ∴ 的长==;
    故选B.
    【点睛】
    本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
    2、D
    【解析】
    如图连接OB、OD;

    ∵AB=CD,
    ∴=,故①正确
    ∵OM⊥AB,ON⊥CD,
    ∴AM=MB,CN=ND,
    ∴BM=DN,
    ∵OB=OD,
    ∴Rt△OMB≌Rt△OND,
    ∴OM=ON,故②正确,
    ∵OP=OP,
    ∴Rt△OPM≌Rt△OPN,
    ∴PM=PN,∠OPB=∠OPD,故④正确,
    ∵AM=CN,
    ∴PA=PC,故③正确,
    故选D.
    3、C
    【解析】
    解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
    故选C.
    【点睛】
    本题考查数据分析.
    4、D
    【解析】
    解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.
    其中8.1出现1次,出现次数最多,8.2排在第三,
    ∴这组数据的众数与中位数分别是:8.1,8.2.
    故选D.
    【点睛】
    本题考查众数;中位数.
    5、C
    【解析】
    ∵DE∥BC,
    ∴∠ADE=∠B,∠AED=∠C,
    又∵∠ADE=∠EFC,
    ∴∠B=∠EFC,△ADE∽△EFC,
    ∴BD∥EF,,
    ∴四边形BFED是平行四边形,
    ∴BD=EF,
    ∴,解得:DE=10.
    故选C.
    6、C
    【解析】
    用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
    【详解】
    买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
    共用去:(2a+3b)元.
    故选C.
    【点睛】
    本题主要考查列代数式,总价=单价乘数量.
    7、A
    【解析】
    分析:首先求出∠AEB,再利用三角形内角和定理求出∠B,最后利用平行四边形的性质得∠D=∠B即可解决问题.
    详解:∵四边形ABCD是正方形,
    ∴∠AEF=90°,
    ∵∠CEF=15°,
    ∴∠AEB=180°-90°-15°=75°,
    ∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,
    ∵四边形ABCD是平行四边形,
    ∴∠D=∠B=65°
    故选A.
    点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
    8、C
    【解析】
    直接利用位似图形的性质得出对应点坐标乘以得出即可.
    【详解】
    解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
    以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
    ∴端点的坐标为:(2,2),(3,1).
    故选C.
    【点睛】
    本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
    9、C
    【解析】
    根据相反数的定义进行解答即可.
    【详解】
    解:由A表示-2,B表示-1,C表示0.75,D表示2.
    根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.
    故答案为C.
    【点睛】
    本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.
    10、B
    【解析】
    首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.
    【详解】
    ∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
    ∴∠BMF=120°,∠FNB=80°,
    ∵将△BMN沿MN翻折得△FMN,
    ∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
    ∴∠F=∠B=180°-60°-40°=80°,
    故选B.
    【点睛】
    主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、110
    【解析】
    试题解析:解:∵∠C=40°,CA=CB,
    ∴∠A=∠ABC=70°,
    ∴∠ABD=∠A+∠C=110°.
    考点:等腰三角形的性质、三角形外角的性质
    点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.
    12、C
    【解析】
    试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.
    考点:平均数的计算.
    13、(2,0)
    【解析】
    根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据Rt△ABC中,OC=AB=2,即可得到点C的坐标
    【详解】
    如图所示,

    ∵直线y=x与双曲线y=交于A,B两点,OA=2,
    ∴AB=2AO=4,
    又∵∠ACB=90°,
    ∴Rt△ABC中,OC=AB=2,
    又∵点C在x轴的正半轴上,
    ∴C(2,0),
    故答案为(2,0).
    【点睛】
    本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长.
    14、
    【解析】
    由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
    【详解】
    解:由直线a∥b∥c,根据平行线分线段成比例定理,
    即可得,
    又由AC=3,CE=5,DF=4
    可得:
    解得:BD=.
    故答案为.
    【点睛】
    此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
    15、-y(3x-y)2
    【解析】
    先提公因式-y,然后再利用完全平方公式进行分解即可得.
    【详解】
    6xy2-9x2y-y3
    =-y(9x2-6xy+y2)
    =-y(3x-y)2,
    故答案为:-y(3x-y)2.
    【点睛】
    本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.
    16、5
    【解析】
    作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
    【详解】
    解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,

    设CM=a,
    ∵AB=AC,
    ∴BC=2CM=2a,
    ∵tan∠ACB=2,
    ∴=2,
    ∴AM=2a,
    由勾股定理得:AC=a,
    S△BDC=BC•DH=10,
    •2a•DH=10,
    DH=,
    ∵∠DHM=∠HMG=∠MGD=90°,
    ∴四边形DHMG为矩形,
    ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
    ∵∠ADC=90°=∠ADG+∠CDG,
    ∴∠ADG=∠CDH,
    在△ADG和△CDH中,
    ∵,
    ∴△ADG≌△CDH(AAS),
    ∴DG=DH=MG=,AG=CH=a+,
    ∴AM=AG+MG,
    即2a=a++,
    a2=20,
    在Rt△ADC中,AD2+CD2=AC2,
    ∵AD=CD,
    ∴2AD2=5a2=100,
    ∴AD=5或−5(舍),
    故答案为5.
    【点睛】
    本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
    17、1
    【解析】
    由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.
    【详解】
    如图,

    ∵双曲线y=(x>0)经过点D,
    ∴S△ODF=k=,
    则S△AOB=2S△ODF=,即OA•BE=,
    ∴OA•BE=1,
    ∵四边形ABCD是矩形,
    ∴OA=OB,
    ∴OB•BE=1,
    故答案为:1.
    【点睛】
    本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.

    三、解答题(共7小题,满分69分)
    18、 (1) (2)△ABC∽△DEF.
    【解析】
    (1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
    (2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
    【详解】
    (1)

    故答案为
    (2)△ABC∽△DEF.
    证明:∵在4×4的正方形方格中,

    ∴∠ABC=∠DEF.


    ∴△ABC∽△DEF.
    【点睛】
    考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
    19、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天
    【解析】
    (1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;
    (2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.
    【详解】
    (1)设甲、乙两队合作完成这项工程需要x天
    根据题意得,,
    解得 x=36,
    经检验x=36是分式方程的解,
    答:甲、乙两队合作完成这项工程需要36天,
    (2)
    设甲、乙需要合作y天,根据题意得,

    解得y≤7
    答:甲、乙两队至多要合作7天.
    【点睛】
    本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
    20、(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.
    【解析】
    (1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;
    (2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.
    【详解】
    (1)设每行驶1千米纯用电的费用为x元,根据题意得:
    =
    解得:x=0.26
    经检验,x=0.26是原分式方程的解,
    答:每行驶1千米纯用电的费用为0.26元;
    (2)从A地到B地油电混合行驶,用电行驶y千米,得:
    0.26y+(﹣y)×(0.26+0.50)≤39
    解得:y≥74,即至少用电行驶74千米.
    21、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【解析】
    (1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.
    (2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.
    【详解】
    (1)把A(-1,2)代入,得到k2=-2,
    ∴反比例函数的解析式为.
    ∵B(m,-1)在上,∴m=2,
    由题意,解得:,∴一次函数的解析式为y=-x+1.
    (2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).
    【点睛】
    本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.
    22、25°
    【解析】
    先利用正方形的性质得OA=OC,∠AOC=90°,再根据旋转的性质得OC=OF,∠COF=40°,则OA=OF,根据等腰三角形的性质得∠OAF=∠OFA,然后根据三角形的内角和定理计算∠OFA的度数.
    【详解】
    解:∵四边形OABC为正方形,
    ∴OA=OC,∠AOC=90°,
    ∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
    ∴OC=OF,∠COF=40°,
    ∴OA=OF,
    ∴∠OAF=∠OFA,
    ∵∠AOF=∠AOC+∠COF=90°+40°=130°,
    ∴∠OFA=(180°-130°)=25°.
    故答案为25°.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.
    23、这种测量方法可行,旗杆的高为21.1米.
    【解析】
    分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.
    详解:这种测量方法可行.
    理由如下:
    设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).

    所以△AGF∽△EHF.
    因为FD=1.1,GF=27+3=30,HF=3,
    所以EH=3.1﹣1.1=2,AG=x﹣1.1.
    由△AGF∽△EHF,
    得,
    即,
    所以x﹣1.1=20,
    解得x=21.1(米)
    答:旗杆的高为21.1米.
    点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.
    24、(1);(2)
    【解析】
    (1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;
    (2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.
    【详解】
    解:(1)根据题意,画树状图如图:

    由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;
    (2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,
    ∴他们三人在同一个半天去游玩的概率为=.
    答:他们三人在同一个半天去游玩的概率是.
    【点睛】
    本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.

    相关试卷

    四川省南充市高坪区南充市白塔中学2023-2024学年七年级下册期中数学试题(含解析):

    这是一份四川省南充市高坪区南充市白塔中学2023-2024学年七年级下册期中数学试题(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省昆明十中、白塔中学中考数学二模试卷(含解析):

    这是一份2023年江苏省昆明十中、白塔中学中考数学二模试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年四川省南充市中考数学一模试卷(含解析):

    这是一份2023年四川省南充市中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map