四川省宜宾市兴文县重点名校2021-2022学年中考数学模拟预测题含解析
展开
这是一份四川省宜宾市兴文县重点名校2021-2022学年中考数学模拟预测题含解析,共26页。试卷主要包含了如图,已知直线l1,二次函数y=ax1+bx+c,已知,若关于x的一元二次方程等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )
A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃
D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上
2.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是( )
A. B. C. D.
3.下列性质中菱形不一定具有的性质是( )
A.对角线互相平分 B.对角线互相垂直
C.对角线相等 D.既是轴对称图形又是中心对称图形
4.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )
A.平均数 B.中位数 C.众数 D.方差
5.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2
6.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
7.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为 圆,则⊙O的“整点直线”共有( )条
A.7 B.8 C.9 D.10
8.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )
A. B. C. D.
9.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cm B.41cm C.51cm D.61cm
10.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1
11.在代数式 中,m的取值范围是( )
A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠0
12.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )
A. B. C.2 D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.
14.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.
15.若a+b=3,ab=2,则a2+b2=_____.
16.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).
17.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,则 AE=_______.
18.如图,已知AB∥CD,若,则=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
学生体能测试成绩各等次人数统计表
体能等级
调整前人数
调整后人数
优秀
8
良好
16
及格
12
不及格
4
合计
40
(1)填写统计表;
(2)根据调整后数据,补全条形统计图;
(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.
20.(6分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.
(1)求证:四边形OBCP是平行四边形;
(2)填空:
①当∠BOP= 时,四边形AOCP是菱形;
②连接BP,当∠ABP= 时,PC是⊙O的切线.
21.(6分)解不等式组,并将它的解集在数轴上表示出来.
22.(8分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.
23.(8分)先化简:,再请你选择一个合适的数作为x的值代入求值.
24.(10分)如图,已知与抛物线C1过 A(-1,0)、B(3,0)、C(0,-3).
(1)求抛物线C1 的解析式.
(2)设抛物线的对称轴与 x 轴交于点 P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出 D 点坐标.
25.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
26.(12分)如图,在梯形中,,,,,点为边上一动点,作⊥,垂足在边上,以点为圆心,为半径画圆,交射线于点.
(1)当圆过点时,求圆的半径;
(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;
(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.
27.(12分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.
请你根据以上信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生“是否随手丢垃圾”情况的众数是 ;
(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.
【详解】
解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是,故A选项错误,
掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是≈0.17,故B选项正确,
一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是 ,故C选项错误,
抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是 ,故D选项错误,
故选B.
【点睛】
此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
2、A
【解析】
根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到==,==,根据三角形的面积公式即可得到结论.
【详解】
∵AC=1,CE=2,EG=3,
∴AG=6,
∵△EFG是等边三角形,
∴FG=EG=3,∠AGF=∠FEG=60°,
∵AE=EF=3,
∴∠FAG=∠AFE=30°,
∴∠AFG=90°,
∵△CDE是等边三角形,
∴∠DEC=60°,
∴∠AJE=90°,JE∥FG,
∴△AJE∽△AFG,
∴==,
∴EJ=,
∵∠BCA=∠DCE=∠FEG=60°,
∴∠BCD=∠DEF=60°,
∴∠ACI=∠AEF=120°,
∵∠IAC=∠FAE,
∴△ACI∽△AEF,
∴==,
∴CI=1,DI=1,DJ=,
∴IJ=,
∴=•DI•IJ=××.
故选:A.
【点睛】
本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键.
3、C
【解析】
根据菱形的性质:①菱形具有平行四边形的一切性质; ②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
【详解】
解:A、菱形的对角线互相平分,此选项正确;
B、菱形的对角线互相垂直,此选项正确;
C、菱形的对角线不一定相等,此选项错误;
D、菱形既是轴对称图形又是中心对称图形,此选项正确;
故选C.
考点:菱形的性质
4、B
【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.
5、D
【解析】
解:∵直线l1与x轴的交点为A(﹣1,0),
∴﹣1k+b=0,∴,解得:.
∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
∴,
解得0<k<1.
故选D.
【点睛】
两条直线相交或平行问题;一次函数图象上点的坐标特征.
6、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
7、D
【解析】
试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.
8、A
【解析】
试题分析:主视图是从正面看到的图形,只有选项A符合要求,故选A.
考点:简单几何体的三视图.
9、C
【解析】
∵DG是AB边的垂直平分线,
∴GA=GB,
△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
∴△ABC的周长=AC+BC+AB=51cm,
故选C.
10、C
【解析】
根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.
故选C
【点睛】
本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
11、D
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
由题意可知:
解得:m≤3且m≠0
故选D.
【点睛】
本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.
12、D
【解析】
根据同弧或等弧所对的圆周角相等可知∠BED=∠BAD,再结合图形根据正切的定义进行求解即可得.
【详解】
∵∠DAB=∠DEB,
∴tan∠DEB= tan∠DAB=,
故选D.
【点睛】
本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.016×105
【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,
【详解】
解:101 600=1.016×105
故答案为:1.016×105
【点睛】
本题考查科学计数法,掌握概念正确表示是本题的解题关键.
14、四丈五尺
【解析】
根据同一时刻物高与影长成正比可得出结论.
【详解】
解:设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴=,
解得x=45(尺).
故答案为:四丈五尺.
【点睛】
本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.
15、1
【解析】
根据a2+b2=(a+b)2-2ab,代入计算即可.
【详解】
∵a+b=3,ab=2,
∴a2+b2=(a+b)2﹣2ab=9﹣4=1.
故答案为:1.
【点睛】
本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.
16、.
【解析】
作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
【详解】
作AH∥EF交BC于H.
∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
∵AE=ED=HF,∴.
∵BC=2AD,∴2.
∵BF=FC,∴,∴.
∵.
故答案为:.
【点睛】
本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
17、5
【解析】
∵BD⊥AC于D,
∴∠ADB=90°,
∴sinA=.
设BD=,则AB=AC=,
在Rt△ABD中,由勾股定理可得:AD=,
∴CD=AC-AD=,
∵在Rt△BDC中,BD2+CD2=BC2,
∴,解得(不合题意,舍去),
∴AB=10,AD=8,BD=6,
∵BE平分∠ABD,
∴,
∴AE=5.
点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到△BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.
18、
【解析】
【分析】利用相似三角形的性质即可解决问题;
【详解】∵AB∥CD,
∴△AOB∽△COD,
∴,
故答案为.
【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)12;22;12;4;50;(2)详见解析;(3)1.
【解析】
(1)求出各自的人数,补全表格即可;
(2)根据调整后的数据,补全条形统计图即可;
(3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
【详解】
解:(1)填表如下:
体能等级
调整前人数
调整后人数
优秀
8
12
良好
16
22
及格
12
12
不及格
4
4
合计
40
50
故答案为12;22;12;4;50;
(2)补全条形统计图,如图所示:
(3)抽取的学生中体能测试的优秀率为24%,
则该校体能测试为“优秀”的人数为1500×24%=1(人).
【点睛】
本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
20、 (1)见解析;(2)①120°;②45°
【解析】
(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;
(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.
【详解】
(1)∵PC∥AB,
∴∠PCM=∠OAM,∠CPM=∠AOM.
∵点M是OP的中点,
∴OM=PM,在△CPM和△AOM中,
,
∴△CPM≌△AOM(AAS),
∴PC=OA.
∵AB是半圆O的直径,
∴OA=OB,
∴PC=OB.
又PC∥AB,
∴四边形OBCP是平行四边形.
(2)①∵四边形AOCP是菱形,
∴OA=PA,
∵OA=OP,
∴OA=OP=PA,
∴△AOP是等边三角形,
∴∠A=∠AOP=60°,
∴∠BOP=120°;
故答案为120°;
②∵PC是⊙O的切线,
∴OP⊥PC,∠OPC=90°,
∵PC∥AB,
∴∠BOP=90°,
∵OP=OB,
∴△OBP是等腰直角三角形,
∴∠ABP=∠OPB=45°,
故答案为45°.
【点睛】
本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.
21、x≤1,解集表示在数轴上见解析
【解析】
首先根据不等式的解法求解不等式,然后在数轴上表示出解集.
【详解】
去分母,得:3x﹣2(x﹣1)≤3,
去括号,得:3x﹣2x+2≤3,
移项,得:3x﹣2x≤3﹣2,
合并同类项,得:x≤1,
将解集表示在数轴上如下:
【点睛】
本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.
22、 (1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.
【解析】
(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;
(2)分点Q在BD上方和下方的情况讨论求解即可.
(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;
(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.
【详解】
解:(1)如图,过点P做PE⊥AD于点E
由已知,AP=PQ,∠APQ=90°
∴△APQ为等腰直角三角形
∴∠PAQ=∠PAB=45°
设PE=x,则AE=x,DE=4﹣x
∵PE∥AB
∴△DEP∽△DAB
∴=
∴=
解得x=
∴PA=PE=
∴弧AQ的长为•2π•=π.
故答案为45,,π.
(2)如图,过点Q做QF⊥BD于点F
由∠APQ=90°,
∴∠APP0+∠QPD=90°
∵∠P0AP+∠APP0=90°
∴∠QPD=∠P0AP
∵AP=PQ
∴△APP0≌△PQF
∴AP0=PF,P0P=QF
∵AP0=P0Q0
∴Q0D=P0P
∴QF=FQ0
∴∠QQ0D=45°.
当点Q在BD的右下方时,同理可得∠PQ0Q=45°,
此时∠QQ0D=135°,
综上所述,满足条件的∠QQ0D为45°或135°.
(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时
过点Q做QF⊥BD于点F,则QF=BP
由(2)可知,PP0=BP
∴BP0=BP
∵AB=3,AD=4
∴BD=5
∵△ABP0∽△DBA
∴AB2=BP0•BD
∴9=BP×5
∴BP=
同理,当点Q位于BD下方时,可求得BP=
故BP的长为或
(4)由(2)可知∠QQ0D=45°
则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,
当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1
当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7
∴EF===5
过点C做CH⊥EF于点H
由面积法可知
CH===
∴CQ的取值范围为:≤CQ≤7
【点睛】
本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.
23、x﹣1,1.
【解析】
先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.
【详解】
解:原式==x﹣1,
根据分式的意义可知,x≠0,且x≠±1,
当x=2时,原式=2﹣1=1.
【点睛】
本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.
24、(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )
【解析】
(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式;
(2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标.
【详解】
(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1
解得a=1,∴解析式为y= x2-2x-3,
(2)如图所示,对称轴为x=1,
过D1作D1H⊥x轴,
∵△CPD为等腰直角三角形,
∴△OPC≌△HD1P,
∴PH=OC=3,HD1=OP=1,∴D1(4,-1)
过点D2F⊥y轴,同理△OPC≌△FCD2,
∴FD2=3,CF=1,故D2(3,- 4)
由图可知CD1与PD2交于D3,
此时PD3⊥CD3,且PD3=CD3,
PC=,∴PD3=CD3=
故D3 ( 2,- 2 )
∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.
【点睛】
此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.
25、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
【解析】
(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
【详解】
(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);
(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
故答案为(1)(2,-2);(2)(1,0)
【点睛】
此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
26、(1)x=1 (2) (1)
【解析】
(1)作AM⊥BC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;
(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9−8k,由△ABE∽△CEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;
(1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG、HN⊥BC,先证△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PC−NC=k,继而表示出EF、EH的长,从而出答案.
【详解】
(1)作AM⊥BC于点M,连接AP,如图1,
∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,
∴BM=4、AM=1,
∴tanB=tanC=,
∵PH⊥DC,
∴设PH=1k,则CH=4k、PC=5k,
∵BC=9,
∴PM=BC−BM−PC=5−5k,
∴AP=AM+PM=9+(5−5k) ,
∵PA=PH,
∴9+(5−5k) =9k,
解得:k=1或k=,
当k= 时,CP=5k= >9,舍去;
∴k=1,
则圆P的半径为1.
(2)如图2,
由(1)知,PH=PE=1k、CH=4k、PC=5k,
∵BC=9,
∴BE=BC−PE−PC=9−8k,
∵△ABE∽△CEH,
∴ ,即 ,
解得:k= ,
则PH= ,即圆P的半径为,
∵圆B与圆P相交,且BE=9−8k= ,
∴
相关试卷
这是一份湖北武汉青山区重点名校2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,计算--|-3|的结果是,已知,则的值为,下列计算正确的是等内容,欢迎下载使用。
这是一份北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
这是一份2022年四川省大竹县重点达标名校中考数学模拟预测题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。