年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    天津市和平区2021-2022学年中考三模数学试题含解析

    天津市和平区2021-2022学年中考三模数学试题含解析第1页
    天津市和平区2021-2022学年中考三模数学试题含解析第2页
    天津市和平区2021-2022学年中考三模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市和平区2021-2022学年中考三模数学试题含解析

    展开

    这是一份天津市和平区2021-2022学年中考三模数学试题含解析,共18页。试卷主要包含了抛物线y=3,平面直角坐标系中的点P等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列博物院的标识中不是轴对称图形的是( )
    A. B.
    C. D.
    2.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为

    A.12 B.20 C.24 D.32
    3.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
    4.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是(  )

    A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
    5.抛物线y=3(x﹣2)2+5的顶点坐标是(  )
    A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
    6.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )

    A. B. C. D.
    7.下列几何体中,主视图和左视图都是矩形的是(  )
    A. B. C. D.
    8.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
    A. B.
    C. D.
    9.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(  )

    A. B. C. D.
    10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
    A.摸出的三个球中至少有一个球是黑球
    B.摸出的三个球中至少有一个球是白球
    C.摸出的三个球中至少有两个球是黑球
    D.摸出的三个球中至少有两个球是白球
    11.已知xa=2,xb=3,则x3a﹣2b等于(  )
    A. B.﹣1 C.17 D.72
    12.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是(  )
    A.﹣1 B.±2 C.2 D.﹣2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算:___.
    14.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
    15.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.

    16.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.
    17.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.

    18.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
    此次共调查了   名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为   度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.
    20.(6分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.
    21.(6分)计算:(-1)-1-++|1-3|
    22.(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.

    请结合图中所给信息解答下列问题:
    (1)本次共调查  名学生;扇形统计图中C所对应扇形的圆心角度数是  ;
    (2)补全条形统计图;
    (3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
    (4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
    23.(8分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
    24.(10分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
    (1)求⊙O的半径长;
    (2)求线段DG的长.

    25.(10分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.
    (1)求反比例函数的解析式;
    (2)求△OEF的面积;
    (3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.

    26.(12分)计算:.化简:.
    27.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
    【详解】
    A、不是轴对称图形,符合题意;
    B、是轴对称图形,不合题意;
    C、是轴对称图形,不合题意;
    D、是轴对称图形,不合题意;
    故选:A.
    【点睛】
    此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误
    2、D
    【解析】
    如图,过点C作CD⊥x轴于点D,

    ∵点C的坐标为(3,4),∴OD=3,CD=4.
    ∴根据勾股定理,得:OC=5.
    ∵四边形OABC是菱形,∴点B的坐标为(8,4).
    ∵点B在反比例函数(x>0)的图象上,
    ∴.
    故选D.
    3、B
    【解析】
    试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
    ∵全班有x名同学,
    ∴每名同学要送出(x-1)张;
    又∵是互送照片,
    ∴总共送的张数应该是x(x-1)=1.
    故选B
    考点:由实际问题抽象出一元二次方程.
    4、A
    【解析】
    根据三角形中位线定理判断即可.
    【详解】
    ∵AD为△ABC的中线,点E为AC边的中点,
    ∴DC=BC,DE=AB,
    ∵BC不一定等于AB,
    ∴DC不一定等于DE,A不一定成立;
    ∴AB=2DE,B一定成立;
    S△CDE=S△ABC,C一定成立;
    DE∥AB,D一定成立;
    故选A.
    【点睛】
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    5、C
    【解析】
    根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
    【详解】
    ∵抛物线解析式为y=3(x-2)2+5,
    ∴二次函数图象的顶点坐标是(2,5),
    故选C.
    【点睛】
    本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
    6、A
    【解析】
    【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.
    【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,
    只有A选项符合题意,
    故选A.
    【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.
    7、C
    【解析】
    主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
    【详解】
    A. 主视图为圆形,左视图为圆,故选项错误;
    B. 主视图为三角形,左视图为三角形,故选项错误;
    C. 主视图为矩形,左视图为矩形,故选项正确;
    D. 主视图为矩形,左视图为圆形,故选项错误.
    故答案选:C.
    【点睛】
    本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
    8、B
    【解析】
    根据第二象限中点的特征可得: ,
    解得: .
    在数轴上表示为:
    故选B.
    考点:(1)、不等式组;(2)、第一象限中点的特征
    9、D
    【解析】
    从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.
    【详解】
    ∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,
    ∴D是该几何体的主视图.
    故选D.
    【点睛】
    本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    10、A
    【解析】
    根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
    【详解】
    A、是必然事件;
    B、是随机事件,选项错误;
    C、是随机事件,选项错误;
    D、是随机事件,选项错误.
    故选A.
    11、A
    【解析】
    ∵xa=2,xb=3,
    ∴x3a−2b=(xa)3÷(xb)2=8÷9= ,
    故选A.
    12、D
    【解析】
    根据一元二次方程根与系数的关系列出方程求解即可.
    【详解】
    设方程的两根分别为x1,x1,
    ∵x1+(k1-4)x+k-1=0的两实数根互为相反数,
    ∴x1+x1,=-(k1-4)=0,解得k=±1,
    当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;
    当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;
    ∴k=-1.
    故选D.
    【点睛】
    本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=− ,x1x1= ,反过来也成立.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.
    【详解】
    原式.
    故答案为.
    【点睛】
    本题考查了实数运算,正确化简各数是解题的关键.
    14、1
    【解析】
    由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
    【详解】
    解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
    ∴△=2,
    ∴b2﹣4ac=22﹣4×1×m=2;
    ∴m=1.
    故答案为1.
    【点睛】
    本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
    15、
    【解析】
    试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.

    ∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
    ∴S△ABC=2S△BCE,S△ABD=2S△ADE,
    ∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
    ∴AC=2BD,
    ∴OD=2OC.
    ∵CD=k,
    ∴点A的坐标为(,3),点B的坐标为(-,-),
    ∴AC=3,BD=,
    ∴AB=2AC=6,AF=AC+BD=,
    ∴CD=k=.
    【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
    16、
    【解析】
    根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.
    【详解】
    解:多边形的边数是:360°÷40°=9,
    则内角和是:(9-2)•180°=1260°.
    故答案为1260°.
    【点睛】
    本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.
    17、1.1
    【解析】
    求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.
    【详解】
    ∵DE=1,DC=3,
    ∴EC=3-1=2,
    ∵四边形ABCD是菱形,
    ∴AD∥BC,
    ∴△DEF∽△CEB,
    ∴,
    ∴,
    ∴DF=1.1,
    故答案为1.1.
    【点睛】
    此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.
    18、1
    【解析】
    设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.
    【详解】
    解:设反比例函数解析式为y=,
    根据题意得k=3×(﹣4)=﹣2m,
    解得m=1.
    故答案为1.
    考点:反比例函数图象上点的坐标特征.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)200;(2)见解析;(3)126°;(4)240人.
    【解析】
    (1)根据文史类的人数以及文史类所占的百分比即可求出总人数
    (2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;
    (3)根据小说类的百分比即可求出圆心角的度数;
    (4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数
    【详解】
    (1)∵喜欢文史类的人数为76人,占总人数的38%,
    ∴此次调查的总人数为:76÷38%=200人,
    故答案为200;
    (2)∵喜欢生活类书籍的人数占总人数的15%,
    ∴喜欢生活类书籍的人数为:200×15%=30人,
    ∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,
    如图所示:

    (3)∵喜欢社科类书籍的人数为:24人,
    ∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,
    ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,
    ∴小说类所在圆心角为:360°×35%=126°;
    (4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
    ∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.
    【点睛】
    此题考查扇形统计图和条形统计图,看懂图中数据是解题关键
    20、1.
    【解析】
    直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.
    【详解】
    解:原式=﹣1++4﹣1﹣(﹣1)
    =﹣1++4﹣1﹣+1
    =1.
    【点睛】
    本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.
    21、-1
    【解析】
    试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.
    试题解析:原式=-1-=-1.
    22、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为.
    【解析】
    【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;
    (2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;
    (3)用“非常了解”所占的比例乘以800即可求得;
    (4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.
    【详解】(1)本次调查的学生总人数为24÷40%=60人,
    扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
    故答案为60、90°;
    (2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,
    补全条形图如下:

    (3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
    (4)画树状图为:

    共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为.
    【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.
    23、(1);(2).
    【解析】
    (1)直接利用概率公式计算;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.
    【详解】
    解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示
    画树状图为:

    共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,
    所以该纽能够翻译上述两种语言的概率= .
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    24、 (1) 1;(2)
    【解析】
    (1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
    (2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
    试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
    ∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
    (2)过G作GP⊥AC,垂足为P,设GP=x,
    由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
    ∴GP=PC=x,
    ∵Rt△AGP∽Rt△ABC,
    ∴=,解得x=,
    即GP=,CG=,
    ∴OG=CG-CO=-=,
    在Rt△ODG中,DG==.

    25、(1)y=;(2);(3)<x<1.
    【解析】
    (1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;
    (3)观察函数图象得到当<x<1时,一次函数图象都在反比例函数图象上方,即k2x+b>.
    【详解】
    (1)∵四边形DOBC是矩形,且点C的坐标为(1,4),
    ∴OB=1,OD=4,
    ∵点A为线段OC的中点,
    ∴A点坐标为(3,2),
    ∴k1=3×2=1,
    ∴反比例函数解析式为y=;
    (2)把x=1代入y=得y=1,则F点的坐标为(1,1);
    把y=4代入y=得x=,则E点坐标为(,4),
    △OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF
    =4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)
    =;
    (3)由图象得:不等式不等式k2x+b>的解集为<x<1.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.
    26、(1)5;(2)-3x+4
    【解析】
    (1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.
    (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.
    【详解】
    (1)解:原式
    (2)解:原式
    【点睛】
    本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.
    27、证明见解析
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AD//BC,AD=BC,
    ∵AE=CF
    ∴AD-AE=BC-CF
    即DE=BF
    ∴四边形BFDE是平行四边形.

    相关试卷

    2024年天津市和平区中考数学三模试卷(含解析):

    这是一份2024年天津市和平区中考数学三模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年天津市和平区中考数学二模试卷(含解析):

    这是一份2024年天津市和平区中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年天津市和平区中考数学三模试卷(含解析):

    这是一份2023年天津市和平区中考数学三模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map