所属成套资源:【五年高考真题】最新五年数学(文理科)高考真题分项汇编(原卷+解析)(2023全国卷地区通用)
- 【五年高考真题】最新五年数学高考真题分项汇编——专题10《解三角形》(2023全国卷地区通用) 其他 9 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题11《平面向量》(2023全国卷地区通用) 其他 5 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题13《数列(解答题)》(2023全国卷地区通用) 其他 12 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题14《不等式》(2023全国卷地区通用) 其他 4 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题15《概率与统计(选择题、填空题)》(理科专用)(2023全国卷地区通用) 其他 3 次下载
【五年高考真题】最新五年数学高考真题分项汇编——专题12《数列(选填题)》(2023全国卷地区通用)
展开
专题12 数列(选填题)1.【2022年全国乙卷】已知等比数列的前3项和为168,,则( )A.14 B.12 C.6 D.3【答案】D【解析】【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D.
2.【2022年全国乙卷】嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( )A. B. C. D.【答案】D【解析】【分析】根据,再利用数列与的关系判断中各项的大小,即可求解.【详解】解:因为,所以,,得到,同理,可得,又因为 ,故,;以此类推,可得,,故A错误;,故B错误;,得,故C错误;,得,故D正确.故选:D.
3.【2022年新高考2卷】中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,是举, 是相等的步,相邻桁的举步之比分别为,若是公差为0.1的等差数列,且直线的斜率为0.725,则( )
A.0.75 B.0.8 C.0.85 D.0.9【答案】D【解析】【分析】设,则可得关于的方程,求出其解后可得正确的选项.【详解】设,则,依题意,有,且,所以,故,故选:D
4.【2021年甲卷文科】记为等比数列的前n项和.若,,则( )A.7 B.8 C.9 D.10【答案】A【解析】【分析】根据题目条件可得,,成等比数列,从而求出,进一步求出答案.【详解】∵为等比数列的前n项和,∴,,成等比数列∴,∴,∴.故选:A.
5.【2021年甲卷理科】等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】【分析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件.若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件.故选:B.【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.
6.【2020年新课标1卷文科】设是等比数列,且,,则( )A.12 B.24 C.30 D.32【答案】D【解析】【分析】根据已知条件求得的值,再由可求得结果.【详解】设等比数列的公比为,则,,因此,.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.
7.【2020年新课标2卷理科】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3699块 B.3474块 C.3402块 D.3339块【答案】C【解析】【分析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.
8.【2020年新课标2卷理科】数列中,,对任意 ,若,则 ( )A.2 B.3 C.4 D.5【答案】C【解析】【分析】取,可得出数列是等比数列,求得数列的通项公式,利用等比数列求和公式可得出关于的等式,由可求得的值.【详解】在等式中,令,可得,,所以,数列是以为首项,以为公比的等比数列,则,,,则,解得.故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.
9.【2020年新课标2卷理科】0-1周期序列在通信技术中有着重要应用.若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标,下列周期为5的0-1序列中,满足的序列是( )A. B. C. D.【答案】C【解析】【分析】根据新定义,逐一检验即可【详解】由知,序列的周期为m,由已知,,对于选项A,,不满足;对于选项B,,不满足;对于选项D,,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.
10.【2020年新课标2卷文科】记Sn为等比数列{an}的前n项和.若a5–a3=12,a6–a4=24,则=( )A.2n–1 B.2–21–n C.2–2n–1 D.21–n–1【答案】B【解析】【分析】根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通项公式和前项和公式进行求解即可.【详解】设等比数列的公比为,由可得:,所以,因此.故选:B.【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前项和公式的应用,考查了数学运算能力.
11.【2019年新课标1卷理科】记为等差数列的前n项和.已知,则A. B. C. D.【答案】A【解析】【分析】等差数列通项公式与前n项和公式.本题还可用排除,对B,,,排除B,对C,,排除C.对D,,排除D,故选A.【详解】由题知,,解得,∴,故选A.【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.
12.【2019年新课标3卷理科】已知各项均为正数的等比数列的前4项和为15,且,则A.16 B.8 C.4 D.2【答案】C【解析】利用方程思想列出关于的方程组,求出,再利用通项公式即可求得的值.【详解】设正数的等比数列{an}的公比为,则,解得,,故选C.【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.
13.【2018年新课标1卷理科】设为等差数列的前项和,若,,则A. B. C. D.【答案】B【解析】【详解】分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果.详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.
14.【2022年全国乙卷】记为等差数列的前n项和.若,则公差_______.【答案】2【解析】【分析】转化条件为,即可得解.【详解】由可得,化简得,即,解得.故答案为:2.
15.【2021年新高考1卷】某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.【答案】 5 【解析】【分析】(1)按对折列举即可;(2)根据规律可得,再根据错位相减法得结果.【详解】(1)由对折2次共可以得到,,三种规格的图形,所以对着三次的结果有:,共4种不同规格(单位;故对折4次可得到如下规格:,,,,,共5种不同规格;(2)由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格如何,其面积成公比为的等比数列,首项为120,第n次对折后的图形面积为,对于第n此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为种(证明从略),故得猜想,设,则,两式作差得:,因此,.故答案为:;.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于结构,其中是等差数列,是等比数列,用错位相减法求和;(3)对于结构,利用分组求和法;(4)对于结构,其中是等差数列,公差为,则,利用裂项相消法求和.
16.【2020年新课标1卷文科】数列满足,前16项和为540,则 ______________.【答案】【解析】【分析】对为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用表示,由偶数项递推公式得出偶数项的和,建立方程,求解即可得出结论.【详解】,当为奇数时,;当为偶数时,.设数列的前项和为,,.故答案为:.【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.
17.【2020年新课标2卷文科】记为等差数列的前n项和.若,则__________.【答案】【解析】【分析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案为:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.
18.【2020年新高考1卷(山东卷)】将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________.【答案】【解析】【分析】首先判断出数列与项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果.【详解】因为数列是以1为首项,以2为公差的等差数列,数列是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列是以1为首项,以6为公差的等差数列,所以的前项和为,故答案为:.【点睛】该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于简单题目.
19.【2019年新课标1卷理科】记Sn为等比数列{an}的前n项和.若,则S5=____________.【答案】.【解析】【分析】本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】设等比数列的公比为,由已知,所以又,所以所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.
20.【2019年新课标1卷文科】记Sn为等比数列{an}的前n项和.若,则S4=___________.【答案】.【解析】【分析】本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】详解:设等比数列的公比为,由已知,即解得,所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算,避免繁分式计算.
21.【2019年新课标3卷理科】记Sn为等差数列{an}的前n项和,,则___________.【答案】4.【解析】【分析】根据已知求出和的关系,再结合等差数列前n项和公式求得结果.【详解】因,所以,即,所以.【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.
22.【2019年新课标3卷文科】记为等差数列的前项和,若,则___________.【答案】100【解析】【分析】根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.
23.【2018年新课标1卷理科】记为数列的前项和,若,则_____________.【答案】【解析】【分析】首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值.【详解】根据,可得,两式相减得,即,当时,,解得,所以数列是以-1为首项,以2为公比的等比数列,所以,故答案是.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.