所属成套资源:2023年高考数学单元复习讲义与检测
- 【高考大一轮单元复习】高考数学单元复习讲义与检测-专题03《函数概念与基本初等函数》讲义(新高考专用) 试卷 32 次下载
- 【高考大一轮单元复习】高考数学单元复习讲义与检测-专题03《函数概念与基本初等函数》测试(新高考专用) 试卷 26 次下载
- 【高考大一轮单元复习】高考数学单元复习讲义与检测-专题04《导数及其应用》测试(新高考专用) 试卷 20 次下载
- 【高考大一轮单元复习】高考数学单元复习讲义与检测-专题05《三角函数与解三角形》讲义(新高考专用) 试卷 36 次下载
- 【高考大一轮单元复习】高考数学单元复习讲义与检测-专题05《三角函数与解三角形》测试(新高考专用) 试卷 28 次下载
【高考大一轮单元复习】高考数学单元复习讲义与检测-专题04《导数及其应用》讲义(新高考专用)
展开这是一份【高考大一轮单元复习】高考数学单元复习讲义与检测-专题04《导数及其应用》讲义(新高考专用)
专题04 导数及其应用知识回顾一、导数的概念及运算:1.导数的概念(1) 函数y=f(x)在x=x0处的瞬时变化率eq \o(lim,\s\do4(Δx→0)) eq \f(Δy,Δx)=eq \o(lim,\s\do4(Δx→0)) ,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)=eq \o(lim,\s\do4(Δx→0)) eq \f(Δy,Δx)=eq \o(lim,\s\do4(Δx→0)) .(2)在f(x)的定义域内,f′(x)是一个函数,这个函数通常称为函数y=f(x)的导函数,记作f′(x)(或y′,yx′),即f′(x)=y′=yx′=,导函数也简称为导数.2.导数的几何意义(1)切线的定义:设PPn是曲线y=f(x)的割线,当点Pn趋近于点P时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为曲线y=f(x)在点P处的切线.(2)导数f′(x0)的几何意义:导数f′(x0)表示曲线y=f(x)在点(x0,f(x0))处的切线的斜率k,即k=f′(x0)=eq \o(lim,\s\do4(Δx→0)) .(3)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).【温馨提示】求切线方程:求曲线过点的切线方程的方法:1、当点是切点时,切线方程为;2、当点不是切点时,可分以下几步完成:第一步:设出切点坐标;第二步:写出过点的切线方程为;第三步:经点代入切线方程,求出的值;第四步:将的值代入可得过点的切线方程.3.基本初等函数的导数公式(1)C′=0;(2)(xα)′=α·xα-1;(3)(ax)′=ax·ln a;(4)(logax)′=eq \f(1,xln a);(5)(sin x)′=cos x;(6)(cos x)′=-sin x;(7)(ex)′=ex;(8)(ln x)′=eq \f(1,x).4.导数的运算法则如果f(x),g(x)都可导,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);(3)eq \b\lc\[\rc\](\a\vs4\al\co1(\f(f(x),g(x))))′=eq \f(f′(x)g(x)-f(x)g′(x),[g(x)]2)(g(x)≠0);(4)[Cf(x)]′=Cf′(x).5.复合函数的导数如果函数y=f(u)与u=g(x)的复合函数为y=h(x)=f(g(x)),则复合函数的导数h′(x)与f′(u),g′(x)之间的关系为:h′(x)=[f(g(x))]′=f′(u)·g′(x)=f′(g(x))·g′(x),即yx′=yu′·ux′.二、导数与函数的单调性:1.函数的单调性与导数的关系2.利用导数判断函数单调性的步骤第1步,确定函数的定义域;第2步,求出导函数f′(x)的零点;第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.【温馨提示】1.利用导数解决单调性问题需要注意的问题(1)定义域优先的原则:解决问题的过程只能在定义域内,通过讨论导数的符号来判断函数的单调区间.(2)注意“临界点”和“间断点”:在对函数划分单调区间时,除了必须确定使导数等于零的点外,还要注意在定义域内的间断点.(3)如果一个函数的单调区间不止一个,这些单调区间之间不能用“∪”连接,而只能用“逗号”或“和”字等隔开.2. (1)函数的单调性与其导函数的正负的关系:在某个区间(a,b)内,若f′(x)>0,则y=f(x)在(a,b)上单调递增;如果f′(x)<0,则y=f(x)在这个区间上单调递减;若恒有f′(x)=0,则y=f(x)是常数函数,不具有单调性.三、导数与函数的极值、最值:1.函数的极值一般地,设函数f(x)在x0处可导,且f′(x0)=0.(1)如果对于x0左侧附近的任意x,都有f′(x)>0;对于x0右侧附近的任意x,都有f′(x)<0,那么此时x0是f(x)的极大值点.(2)如果对于x0左侧附近的任意x,都有f′(x)<0;对于x0右侧附近的任意x,都有f′(x)>0,那么此时x0是f(x)的极小值点.(3)如果f′(x)在x0的左侧附近与右侧附近均为正号(或均为负号),则x0一定不是y=f(x)的极值点.(4)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在[a,b]上的最值如果函数y=f(x)的定义域为[a,b]且存在最值,函数y=f(x)在(a,b)内可导,那么函数的最值点要么是区间端点a或b,要么是极值点.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.【温馨提示】1.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.2.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.四、导数的综合应用:1.导数的几何意义: 对导数的几何意义的考查,要关注三类问题,即求切线问题、已知切线求参数问题、切线的应用问题等.这三类问题往往结合函数的性质、函数的图象、直线方程、点到直线的距离等. 2.利用导数研究函数的单调性:利用导数研究函数单调性的考查,要关注三类问题,即求函数单调性区间、含参数函数单调性讨论、根据单调性逆向求参数问题等.这三类问题有时会以小题的形式出现,较多的应是解答题的某一问.利用导数研究函数单调性的关键:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域;(2)单调区间的划分要注意对导数等于零的点的确认;(3)已知函数单调性求参数范围,要注意导数等于零的情况.3.利用导数研究函数的极值、最值:利用导数研究函数的极值的考查,要关注三类问题,即已知函数求极值、根据函数极值(点)逆向求参数、函数的极值(点)性质的考查等.其中已知函数求极值可能以小题的形式考查,其余主要是解答题的某一问.利用导数研究函数的极值、最值应注意的问题:(1)不能忽略函数f(x)的定义域;(2)f′(x0)=0是可导函数在x=x0处取得极值的必要不充分条件;(3)函数的极小值不一定比极大值小;(4)函数在区间(a,b)上有唯一极值点,则这个极值点也是最大(小)值点,此结论在导数的实际应用中经常用到.4.导数的简单应用利用导数研究函数的单调性是导数应用的基础,只有研究了函数的单调性,才能研究其函数图象的变化规律,进而确定其极值、最值和函数的零点等.注意:若可导函数f(x)在区间D上单调递增,则有f′(x)≥0在区间D上恒成立,但反过来不一定成立.导数与函数零点或方程根的问题:论函数零点的个数、已知方程根求参数问题或研究函数零点的性质——数形结合思想,研究方程根的情况,可以通过导数研究函数的单调性、最值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数零点x0∈(a,b),求参数范围的一般步骤:(1)对函数求导;(2)分析函数在区间(a,b)上的单调情况;(3)数形结合分析极值点;(4)依据零点的个数确定极值的取值范围,从而得到参数的范围.5.导数与不等式恒成立、存在性问题:研究不等式恒成立问题,解题的关键是问题的转化,如函数有两个极值点,转化为相应方程有两个不等实根,不等式恒成立问题转化为研究函数的最值,对学生的推理论证能力、运算求解能力要求较高,难度较大,属于困难题.1)由不等式恒成立求参数的取值范围问题的策略:(1)求最值法,将恒成立问题转化为利用导数求函数的最值问题;(2)分离参数法,将参数分离出来,进而转化为a>f(x)max或a
相关试卷
这是一份【高考大一轮单元复习】高考数学单元复习讲义与检测-专题12《统计与统计案例》讲义(新高考专用),文件包含高考大一轮单元复习高考数学单元复习讲义与检测-专题12《统计与统计案例》讲义新高考专用解析版docx、高考大一轮单元复习高考数学单元复习讲义与检测-专题12《统计与统计案例》讲义新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共113页, 欢迎下载使用。
这是一份【高考大一轮单元复习】高考数学单元复习讲义与检测-专题11《圆锥曲线》讲义(新高考专用),文件包含高考大一轮单元复习高考数学单元复习讲义与检测-专题11《圆锥曲线》讲义新高考专用解析版docx、高考大一轮单元复习高考数学单元复习讲义与检测-专题11《圆锥曲线》讲义新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共99页, 欢迎下载使用。
这是一份【高考大一轮单元复习】高考数学单元复习讲义与检测-专题10《直线与圆》讲义(新高考专用),文件包含高考大一轮单元复习高考数学单元复习讲义与检测-专题10《直线与圆》讲义新高考专用解析版docx、高考大一轮单元复习高考数学单元复习讲义与检测-专题10《直线与圆》讲义新高考专用原卷版docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。