终身会员
搜索
    上传资料 赚现金
    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题13 平行线、展开图、对称性-三年(2020-2022)中考数学真题分项汇编(江苏专用)(原卷版).docx
    • 解析
      专题13 平行线、展开图、对称性-三年(2020-2022)中考数学真题分项汇编(江苏专用)(解析版).docx
    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)01
    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)02
    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)03
    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)01
    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)02
    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)

    展开
    这是一份2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷),文件包含专题13平行线展开图对称性-三年2020-2022中考数学真题分项汇编江苏专用解析版docx、专题13平行线展开图对称性-三年2020-2022中考数学真题分项汇编江苏专用原卷版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。

    专题13 平行线、展开图、对称性
    一、单选题
    1.(2022·江苏无锡·中考真题)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是(       )


    A. AE⊥DE B. AE//OD C. DE=OD D.∠BOD=50°
    【答案】C
    【解析】
    【分析】
    过点D作DF⊥AB于点F,根据切线的性质得到OD⊥DE,证明OD∥AE,根据平行线的性质以及角平分线的性质逐一判断即可.
    【详解】
    解:∵DE是⊙O的切线,
    ∴OD⊥DE,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠BAC,
    ∴∠OAD=∠EAD,
    ∴∠EAD=∠ODA,
    ∴OD∥AE,
    ∴AE⊥DE.故选项A、B都正确;
    ∵∠OAD=∠EAD=∠ODA=25°,∠EAD=25°,
    ∴∠BOD=∠OAD+∠ODA=50°,故选项D正确;
    ∵AD平分∠BAC,AE⊥DE,DF⊥AB,
    ∴DE=DF 故选:C.


    【点睛】
    本题考查的是切线的性质,角平分线的性质定理,平行线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    2.(2022·江苏宿迁·中考真题)如图,AB∥ED,若∠1=70°,则∠2的度数是(       )

    A.70° B.80° C.100° D.110°
    【答案】D
    【解析】
    【分析】
    利用平行线的性质,对顶角的性质计算即可.
    【详解】
    解:∵AB∥ED,
    ∴∠3+∠2=180°,
    ∵∠3=∠1,∠1=70°,
    ∴∠2=180°-∠3=180°-∠1=180°-70°=110°,
    故选:D.

    【点睛】
    本题考查的是平行线的性质,对顶角的性质,解题的关键熟练掌握平行线的性质,找到互补的两个角.
    3.(2022·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是(       )

    A.强 B.富 C.美 D.高
    【答案】D
    【解析】
    【分析】
    根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.
    【详解】
    解:根据题意得: “盐”字所在面相对的面上的汉字是“高”,
    故选D
    【点睛】
    本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.
    4.(2022·江苏泰州·中考真题)如图为一个几何体的表面展开图,则该几何体是(     )


    A.三棱锥 B.四棱锥 C.四棱柱 D.圆锥
    【答案】B
    【解析】
    【分析】
    底面为四边形,侧面为三角形可以折叠成四棱锥.
    【详解】
    解:由图可知,底面为四边形,侧面为三角形,
    ∴该几何体是四棱锥,
    故选:B.
    【点睛】
    本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.
    5.(2022·江苏常州·中考真题)下列图形中,为圆柱的侧面展开图的是(       )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】
    根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.
    【详解】
    解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,
    得到其侧面展开图是对边平行且相等的四边形;
    又有母线垂直于上下底面,故可得是矩形.
    故选:D.
    【点睛】
    本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.
    6.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是(       )
    A. B.
    C. D.
    【答案】C
    【解析】
    【分析】
    根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.
    【详解】
    解:根据正方体展开图特点可得C答案可以围成正方体,
    故选:C.
    【点睛】
    此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.
    7.(2022·江苏盐城·中考真题)下列四幅照片中,主体建筑的构图不对称的是(       )
    A. B.
    C. D.
    【答案】B
    【解析】
    【分析】
    根据轴对称图形的定义,逐项判断即可求解.
    【详解】
    解:A、主体建筑的构图对称,故本选项不符合题意;
    B、主体建筑的构图不对称,故本选项符合题意;
    C、主体建筑的构图对称,故本选项不符合题意;
    D、主体建筑的构图对称,故本选项不符合题意;
    故选B.
    【点睛】
    本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
    8.(2022·江苏常州·中考真题)在平面直角坐标系中,点A与点关于轴对称,点A与点关于轴对称.已知点,则点的坐标是(       )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    直接利用关于x,y轴对称点的性质分别得出A,点坐标,即可得出答案.
    【详解】
    解:∵点的坐标为(1,2),点A与点关于轴对称,
    ∴点A的坐标为(1,-2),
    ∵点A与点关于轴对称,
    ∴点的坐标是(-1,﹣2).
    故选:D.
    【点睛】
    此题主要考查了关于x,y轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.
    9.(2022·江苏无锡·中考真题)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为(       )
    A.扇形 B.平行四边形 C.等边三角形 D.矩形
    【答案】B
    【解析】
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;
    B、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;
    C、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;
    D、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;
    故选:B.
    【点睛】
    此题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.
    10.(2022·江苏连云港·中考真题)下列图案中,是轴对称图形的是(       )
    A.B.C. D.
    【答案】A
    【解析】
    【分析】
    根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.
    【详解】
    A.是轴对称图形,故该选项正确,符合题意;
    B.不是轴对称图形,故该选项不正确,不符合题意;
    C.不是轴对称图形,故该选项不正确,不符合题意;
    D.不是轴对称图形,故该选项不正确,不符合题意;
    故选A
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    11.(2021·江苏淮安·中考真题)如图,直线a、b被直线c所截,若a∥b,∠1=70°,则∠2的度数是(       )

    A.70° B.90° C.100° D.110°
    【答案】D
    【解析】
    【分析】
    根据邻补角得出∠3的度数,进而利用平行线的性质解答即可.
    【详解】
    解:∵∠1=70°,
    ∴∠3=180°﹣∠1=180°﹣70°=110°,
    ∵a∥b,
    ∴∠2=∠3=110°,
    故选:D.

    【点睛】
    本题考查了平行线的性质和邻补角,解题关键是熟记两直线平行,内错角相等.
    12.(2021·江苏宿迁·中考真题)如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是(   )


    A.30° B.40° C.50° D.60°
    【答案】B
    【解析】
    【分析】
    由三角形的内角和可求∠ABC,根据角平分线可以求得∠ABD,由DE//AB,可得∠BDE=∠ABD即可.
    【详解】
    解:∵∠A+∠C=100°
    ∴∠ABC=80°,
    ∵BD平分∠BAC,
    ∴∠ABD=40°,
    ∵DE∥AB,
    ∴∠BDE=∠ABD=40°,
    故答案为B.
    【点睛】
    本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.
    13.(2021·江苏扬州·中考真题)把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是(       )

    A.五棱锥 B.五棱柱 C.六棱锥 D.六棱柱
    【答案】A
    【解析】
    【分析】
    由平面图形的折叠及立体图形的表面展开图的特点解题.
    【详解】
    解:由图可知:折叠后,该几何体的底面是五边形,
    则该几何体为五棱锥,
    故选A.
    【点睛】
    本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.
    14.(2021·江苏徐州·中考真题)下列图形,是轴对称图形但不是中心对称图形的是(       )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】
    根据轴对称图形和中心对称图形的定义对选项逐一分析即可
    【详解】
    A.不是轴对称图形,也不是中心对称图形,不符合题意;
    B.是轴对称图形,也是中心对称图形,不符合题意;
    C.不是轴对称图形,是中心对称图形,不符合题意;
    D. 是轴对称图形但不是中心对称图形,符合题意
    故选D
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,了解轴对称图形和中心对称图形的定义是解题的关键.
    15.(2021·江苏常州·中考真题)观察所示脸谱图案,下列说法正确的是(       )

    A.它是轴对称图形,不是中心对称图形 B.它是中心对称图形,不是轴对称图形
    C.它既是轴对称图形,也是中心对称图形 D.它既不是轴对称图形,也不是中心对称图形
    【答案】A
    【解析】
    【分析】
    根据轴对称图形和中心对称图形的定义,逐一判断选项,即可.
    【详解】
    解:脸谱图案是轴对称图形,不是中心对称图形,
    故选A.
    【点睛】
    本题主要考查轴对称和中心对称图形,掌握轴对称和中心对称图形的定义,是解题的关键.
    16.(2021·江苏盐城·中考真题)北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是(       )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    根据轴对称图形的定义判断即可
    【详解】
    A,B,C都不是轴对称图形,故不符合题意;
    D是轴对称图形,
    故选D.
    【点睛】
    本题考查了轴对称图形的定义,准确理解定义是解题的关键.
    17.(2021·江苏苏州·中考真题)如图,在平行四边形中,将沿着所在的直线翻折得到,交于点,连接,若,,,则的长是(       )


    A.1 B. C. D.
    【答案】B
    【解析】
    【分析】
    利用平行四边形的性质、翻折不变性可得△AEC为等腰直角三角形,根据已知条件可得CE得长,进而得出ED的长,再根据勾股定理可得出;
    【详解】
    解:∵四边形是平行四边形
    ∴AB=CD ∠B=∠ADC=60°,∠ACB=∠CAD
    由翻折可知:BA=AB′=DC,∠ACB=∠AC B′=45°,
    ∴△AEC为等腰直角三角形
    ∴AE=CE
    ∴Rt△AE B′≌Rt△CDE
    ∴EB′=DE
    ∵在等腰Rt△AEC中,

    ∵在Rt△DEC中, ,∠ADC=60°
    ∴∠DCE=30°
    ∴DE=1
    在等腰Rt△DE B′中,EB′=DE=1
    ∴=
    故选:B
    【点睛】
    本题考查翻折变换、等腰三角形的性质、勾股定理、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    18.(2021·江苏无锡·中考真题)下列图形中,既是中心对称图形又是轴对称图形的是(       )
    A.B. C. D.
    【答案】A
    【解析】
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.
    【详解】
    解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    B.是轴对称图形,不是中心对称图形,故本选项不合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不合题意;
    D.是轴对称图形,不是中心对称图形,故本选项不合题意.
    故选:A.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    19.(2021·江苏宿迁·中考真题)对称美是美的一种重要形式,它能给与人们一种圆满、协调和平的美感,下列图形属于中心对称图形的是(   )
    A.B.C. D.
    【答案】A
    【解析】
    【分析】
    根据中心对称图形的定义即可作出判断.
    【详解】
    解:A、是中心对称图形,故选项正确;
    B、不是中心对称图形,故选项错误;
    C、不是中心对称图形,故选项错误;
    D、不是中心对称图形,故选项错误.
    故选:A.
    【点睛】
    本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    20.(2020·江苏宿迁·中考真题)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数为(  )

    A.40° B.50° C.130° D.150°
    【答案】B
    【解析】
    【分析】
    由a∥b,利用“两直线平行,同位角相等”可求出∠2的度数.
    【详解】
    ∵a∥b,
    ∴∠2=∠1=50°.
    故选:B.
    【点睛】
    本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.
    21.(2020·江苏南通·中考真题)如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是(  )

    A.36° B.34° C.32° D.30°
    【答案】A
    【解析】
    【分析】
    过点E作EF∥AB,则EF∥CD,由EF∥AB,利用“两直线平行,内错角相等”可得出∠AEF的度数,结合∠CEF=∠AEF-∠AEC可得出∠CEF的度数,由EF∥CD,利用“两直线平行,内错角相等”可求出∠C的度数.
    【详解】
    解:过点E作EF∥AB,则EF∥CD,如图所示.

    ∵EF∥AB,
    ∴∠AEF=∠A=54°,
    ∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.
    又∵EF∥CD,
    ∴∠C=∠CEF=36°.
    故选:A.
    【点睛】
    本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.
    22.(2020·江苏常州·中考真题)如图,直线a、b被直线c所截,,,则的度数是(       )

    A.30° B.40° C.50° D.60°
    【答案】B
    【解析】
    【分析】
    先根据邻补角相等求得∠3,然后再根据两直线平行、内错角相等即可解答.
    【详解】
    解:∵∠1+∠3=180°,
    ∴∠3=180°-∠1=180°-140°=40°

    ∴∠2=∠3=40°.
    故答案为B.

    【点睛】
    本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.
    23.(2020·江苏泰州·中考真题)把如图所示的纸片沿着虚线折叠,可以得到的几何体是(       )

    A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
    【答案】A
    【解析】
    【分析】
    根据折线部分折回立体图形判断即可.
    【详解】
    由图形折线部分可知,有两个三角形面平行,三个矩形相连,可知为三棱柱.
    故选A.
    【点睛】
    本题考查折叠与展开相关知识点,关键在于利用空间想象能力折叠回立体图形.
    24.(2020·江苏镇江·中考真题)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于(  )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.
    【详解】
    解:∵AM∥BN,PQ∥AB,
    ∴四边形ABQP是平行四边形,
    ∴AP=BQ=x,
    由图②可得当x=9时,y=2,
    此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,

    ∴BD=BQ﹣QD=x﹣y=7,
    ∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,
    ∴BC=CD=BD=,AC⊥BD,
    ∴cosB===,
    故选:D.
    【点睛】
    本题考查了平行四边形的判定与性质,折叠的性质,锐角三角函数等知识.理解函数图象上的点的具体含义是解题的关键.
    25.(2020·江苏徐州·中考真题)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是(       )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    根据轴对称图形和中心对称图形的概念逐项判断即可.
    【详解】
    A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;
    B.是轴对称图形,不是中心对称图形,故此选项不符合题意;
    C.是轴对称图形,也是中心对称图形,故此选项符合题意;
    D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,
    故选:C.
    【点睛】
    本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.
    26.(2020·江苏扬州·中考真题)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是(       )
    A. B.C.D.
    【答案】C
    【解析】
    【分析】
    根据轴对称图形的定义逐项判断即得答案.
    【详解】
    解:A、是轴对称图形,故本选项不符合题意;
    B、是轴对称图形,故本选项不符合题意;
    C、不是轴对称图形,故本选项符合题意;
    D、是轴对称图形,故本选项不符合题意.
    故选:C.
    【点睛】
    本题考查了轴对称图形的定义,属于基础概念题型,熟知轴对称图形的概念是解题关键.
    27.(2020·江苏无锡·中考真题)下列所述图形中,是轴对称图形但不是中心对称图形的是  
    A.圆 B.菱形 C.平行四边形 D.等腰三角形
    【答案】D
    【解析】
    【分析】
    根据轴对称图形与中心对称图形的概念进行判断即可.
    【详解】
    A、是轴对称图形,也是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项错误;
    C、不是轴对称图形,是中心对称图形,故此选项错误;
    D、是轴对称图形,不是中心对称图形,故此选项正确,
    故选D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.
    28.(2020·江苏淮安·中考真题)在平面直角坐标系中,点关于原点对称的点的坐标是(     )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    根据坐标系中对称点与原点的关系判断即可.
    【详解】
    关于原点对称的一组坐标横纵坐标互为相反数,
    所以(3,2)关于原点对称的点是(-3,-2),
    故选C.
    【点睛】
    本题考查原点对称的性质,关键在于牢记基础知识.
    29.(2020·江苏盐城·中考真题)下列图形中,属于中心对称图形的是:(   )
    A. B.
    C. D.
    【答案】B
    【解析】
    【分析】
    根据中心对称图形的概念即图形旋转180°后与原图重合即可求解.
    【详解】
    解:解:A、不是中心对称图形,故此选项错误;
    B、是中心对称图形,故此选项正确;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误,
    故选:B.
    【点睛】
    本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.
    二、填空题
    30.(2022·江苏扬州·中考真题)将一副直角三角板如图放置,已知,,,则________°.

    【答案】105
    【解析】
    【分析】
    根据平行线的性质可得,根据三角形内角和定理以及对顶角相等即可求解.
    【详解】
    ,,

    ∵∠E=60°,
    ∴∠F=30°,

    故答案为:105
    【点睛】
    本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.
    31.(2022·江苏扬州·中考真题)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片,第1次折叠使点落在边上的点处,折痕交于点;第2次折叠使点落在点处,折痕交于点.若,则_____________.

    【答案】6
    【解析】
    【分析】
    根据第一次折叠的性质求得和,由第二次折叠得到,,进而得到,易得MN是的中位线,最后由三角形的中位线求解.
    【详解】
    解:∵已知三角形纸片,第1次折叠使点落在边上的点处,折痕交于点,
    ∴,.
    ∵第2次折叠使点落在点处,折痕交于点,
    ∴,,
    ∴,
    ∴.
    ∵,
    ∴MN是的中位线,
    ∴,.
    ∵,,
    ∴.
    故答案为:6.
    【点睛】
    本题主要考查了折叠的性质和三角形中位线的性质,理解折叠的性质,三角形的中位线性质是解答关键.
    32.(2021·江苏泰州·中考真题)如图,木棒AB、CD与EF分别在G、H处用可旋转的螺丝铆住,∠EGB=100°,∠EHD=80°,将木棒AB绕点G逆时针旋转到与木棒CD平行的位置,则至少要旋转 ___°.

    【答案】20
    【解析】
    【分析】
    根据同位角相等两直线平行,得出当∠EHD=∠EGN=80°,MN//CD,再得出旋转角∠BGN的度数即可得出答案.
    【详解】
    解:过点G作MN,使∠EHD=∠EGN=80°,
    ∴MN//CD,
    ∵∠EGB=100°,
    ∴∠BGN=∠EGB-∠EGN=100°-80°=20°,
    ∴至少要旋转20°.

    【点睛】
    本题考查了平行线的判定,以及图形的旋转,熟练掌握相关的知识是解题的关键.
    33.(2021·江苏淮安·中考真题)如图,正比例函数y=k1x和反比例函数y=图象相交于A、B两点,若点A的坐标是(3,2),则点B的坐标是___.

    【答案】(﹣3,﹣2)
    【解析】
    【分析】
    由于正比例函数与反比例函数的图象均关于原点对称,所以A、B两点关于原点对称,由关于原点对称的点的坐标特点求出B点坐标即可.
    【详解】
    解:∵正比例函数与反比例函数的图象均关于原点对称,
    ∴A、B两点关于原点对称,
    ∵A的坐标为(3,2),
    ∴B的坐标为(﹣3,﹣2).
    故答案为:(﹣3,﹣2).
    【点睛】
    本题主要考查了关于原点对称点的坐标关系,解题的关键在于能够熟练掌握相关知识进行求解.
    34.(2020·江苏盐城·中考真题)如图,直线被直线所截,.那么_______________________.

    【答案】
    【解析】
    【分析】
    根据平行线的性质即可求解.
    【详解】


    ∵∠2+∠3=180°
    ∴∠2=120°
    故答案为:120.
    【点睛】
    此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.
    35.(2020·江苏连云港·中考真题)如图,正六边形内部有一个正五形,且,直线经过、,则直线与的夹角________.

    【答案】48
    【解析】
    【分析】
    已知正六边形内部有一个正五形,可得出正多边形的内角度数,根据和四边形内角和定理即可得出的度数.
    【详解】
    ∵多边形是正六边形,多边形是正五边形






    故答案为:48
    【点睛】
    本题考查了正多边形内角的求法,正n多边形内角度数为,四边形的内角和为360°,以及平行线的性质定理,两直线平行同位角相等.
    36.(2020·江苏宿迁·中考真题)如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为_____.

    【答案】
    【解析】
    【分析】
    由矩形的性质求出∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,根据S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ可求出答案.
    【详解】
    ∵当点P从点A运动到点D时,线段BQ的长度不变,
    ∴点Q运动轨迹是圆弧,如图,阴影部分的面积即为线段PQ在平面内扫过的面积,

    ∵矩形ABCD中,AB=1,AD=,
    ∴∠ABC=∠BAC=∠C=∠Q=90°,
    ∴∠ADB=∠DBC=∠ODB=∠OBQ=30°,
    ∴∠ABQ=120°,
    由轴对称性得:BQ=BA=CD,
    在△BOQ和△DOC中,

    ∴△BOQ≌△DOC,
    ∴S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ,
    =S四边形ABOD+S△COD﹣S扇形ABQ,
    =S矩形ABCD﹣S△ABQ=1×-.
    故答案为:.
    【点睛】
    本题考查了矩形的性质,扇形的面积公式,轴对称的性质,熟练掌握矩形的性质是解题的关键.
    37.(2020·江苏盐城·中考真题)如图,已知点,直线轴,垂足为点其中,若与关于直线对称,且有两个顶点在函数的图像上,则的值为:_______________________.

    【答案】或
    【解析】
    【分析】
    因为与关于直线l对称,且直线轴,从而有互为对称点纵坐标相同,横坐标之和为2m,利用等量关系计算出m的值,又由于有两个顶点在函数,从而进行分情况讨论是哪两个点在函数上,求出k的值.
    【详解】
    解:∵与关于直线l对称,直线轴,垂足为点,
    ∴,,
    ∵有两个顶点在函数
    (1)设,在直线上,
    代入有,不符合故不成立;
    (2)设,在直线上,
    有,,,,代入方程后k=-6;
    (3)设,在直线上,
    有,,,,代入方程后有k=-4;
    综上所述,k=-6或k=-4;
    故答案为:-6或-4.
    【点睛】
    本题考查轴对称图形的坐标关系以及反比例函数解析式,其中明确轴对称图形纵坐标相等,横坐标之和为对称轴横坐标的2倍是解题的关键.
    三、解答题
    38.(2022·江苏常州·中考真题)在四边形中,是边上的一点.若,则点叫做该四边形的“等形点”.

    (1)正方形_______“等形点”(填“存在”或“不存在”);
    (2)如图,在四边形中,边上的点是四边形的“等形点”.已知,,,连接,求的长;
    (3)在四边形中,EH//FG.若边上的点是四边形的“等形点”,求的值.
    【答案】(1)不存在,理由见详解
    (2)
    (3)1
    【解析】
    【分析】
    (1)根据“等形点”的概念,采用反证法即可判断;
    (2)过A点作AM⊥BC于点M,根据“等形点”的性质可得AB=CD=,OA=OC=5,OB=7=OD,设MO=a,则BM=BO-MO=7-a,在Rt△ABM和Rt△AOM中,利用勾股定理即可求出AM,则在Rt△AMC中利用勾股定理即可求出AC;
    (3)根据“等形点”的性质可得OF=OH,OE=OG,∠EOF=∠GOH,再根据,可得∠EOF=∠OEH,∠GOH=∠EHO,即有∠OEH=∠OHE,进而有OE=OH,可得OF=OG,则问题得解.
    (1)
    不存在,
    理由如下:
    假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,
    ∵在正方形ABCD中,点O在边BC上,
    ∴∠ABO=90°,
    ∵△OAB≌△OCD,
    ∴∠ABO=∠CDO=90°,
    ∴CD⊥DO,
    ∵CD⊥BC,
    ∴,
    ∵O点在BC上,
    ∴DO与BC交于点O,
    ∴假设不成立,
    故正方形不存在“等形点”;
    (2)
    如图,过A点作AM⊥BC于点M,如图,

    ∵O点是四边形ABCD的“等形点”,
    ∴△OAB≌△OCD,
    ∴AB=CD,OA=OC,OB=OD,∠AOB=∠COD,
    ∵,OA=5,BC=12,
    ∴AB=CD=,OA=OC=5,
    ∴OB=BC-OC=12-5=7=OD,
    ∵AM⊥BC,
    ∴∠AMO=90°=∠AMB,
    ∴设MO=a,则BM=BO-MO=7-a,
    ∴在Rt△ABM和Rt△AOM中,,
    ∴,即,
    解得:,即,
    ∴MC=MO+OC=,
    ∴在Rt△AMC中,,
    即AC的长为;
    (3)
    如图,

    ∵O点是四边形EFGH的“等形点”,
    ∴△OEF≌△OGH,
    ∴OF=OH,OE=OG,∠EOF=∠GOH,
    ∵,
    ∴∠EOF=∠OEH,∠GOH=∠EHO,
    ∴根据∠EOF=∠GOH有∠OEH=∠OHE,
    ∴OE=OH,
    ∵OF=OH,OE=OG,
    ∴OF=OG,
    ∴.
    【点睛】
    本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识,充分利用全等三角形的性质是解答本题的关键.
    39.(2022·江苏泰州·中考真题)已知:△ABC中,D 为BC边上的一点.


    (1)如图①,过点D作DE∥AB交AC边于点E,若AB=5,BD=9,DC=6,求DE的长;
    (2)在图②,用无刻度的直尺和圆规在AC边上做点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
    (3)如图③,点F在AC边上,连接BF、DF,若∠DFA=∠A,△FBC的面积等于,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.
    【答案】(1)2
    (2)图见详解
    (3)直线BC与⊙F相切,理由见详解
    【解析】
    【分析】
    (1)由题意易得,则有,然后根据相似三角形的性质与判定可进行求解;
    (2)作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;
    (3)作BR∥CF交FD的延长线于点R,连接CR,证明四边形ABRF是等腰梯形,推出AB=FR,由CF∥BR,推出,推出CD⊥DF,然后问题可求解.
    (1)
    解:∵DE∥AB,
    ∴,
    ∴,
    ∵AB=5,BD=9,DC=6,
    ∴,
    ∴;
    (2)
    解:作DT∥AC交AB于点T,作∠TDF=∠ATD,射线DF交AC于点F,则点F即为所求;
    如图所示:点F即为所求,


    (3)
    解:直线BC与⊙F相切,理由如下:
    作BR∥CF交FD的延长线于点R,连接CR,如图,


    ∵∠DFA=∠A,
    ∴四边形ABRF是等腰梯形,
    ∴,
    ∵△FBC的面积等于,
    ∴,
    ∴CD⊥DF,
    ∵FD是⊙F的半径,
    ∴直线BC与⊙F相切.
    【点睛】
    本题主要考查相似三角形的性质与判定、平行线的性质与判定及切线的判定,熟练掌握相似三角形的性质与判定、平行线的性质与判定及切线的判定是解题的关键.
    40.(2022·江苏扬州·中考真题)如图,在中,分别平分,交于点.

    (1)求证:;
    (2)过点作,垂足为.若的周长为56,,求的面积.
    【答案】(1)见详解
    (2)84
    【解析】
    【分析】
    (1)由平行四边形的性质证即可求证;
    (2)作,由即可求解;
    (1)
    证明:在中,
    ∵,
    ∴,
    ∵分别平分,,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴.
    (2)
    如图,作,

    ∵的周长为56,
    ∴,
    ∵平分,
    ∴,
    ∴.
    【点睛】
    本题主要考查平行四边形的性质、三角形的全等、角平分线的性质,掌握相关知识并灵活应用是解题的关键.
    41.(2022·江苏宿迁·中考真题)如图,二次函数与轴交于 (0,0), (4,0)两点,顶点为,连接、,若点是线段上一动点,连接,将沿折叠后,点落在点的位置,线段与轴交于点,且点与、点不重合.


    (1)求二次函数的表达式;
    (2)①求证:;
    ②求;
    (3)当时,求直线与二次函数的交点横坐标.
    【答案】(1)
    (2)①证明见解析,②
    (3)或.
    【解析】
    【分析】
    (1)二次函数与轴交于 (0,0),A(4,0)两点,代入求得b,c的值,即可得到二次函数的表达式;
    (2)①由=,得到顶点C的坐标是(2,﹣2),抛物线和对称轴为直线x=2,由抛物线的对称性可知OC=AC,得到∠CAB=∠COD,由折叠的性质得到△ABC≌△BC,得∠CAB=∠,AB=B,进一步得到∠COD=∠,由对顶角相等得∠ODC=∠BD,证得结论;
    ②由,得到,设点D的坐标为(d,0),由两点间距离公式得DC=,在0<d<4的范围内,当d=2时,DC有最小值为,得到的最小值,进一步得到的最小值;
    (3)由和得到 ,求得B=AB=1,进一步得到点B的坐标是(3,0),设直线BC的解析式为y=x+,把点B(3,0),C(2,﹣2)代人求出直线BC的解析式为y=2x-6,设点的坐标是(p,q),则线段A的中点为(,),由折叠的性质知点(,)在直线BC上,求得q=2p-4,由两点间距离公式得B=,解得p=2或p=,求得点的坐标,设直线的解析式为y=x+,由待定系数法求得直线的解析式为y=x+4,联立直线和抛物线,解方程组即可得到答案.
    (1)
    解:∵二次函数与轴交于 (0,0), (4,0)两点,
    ∴代入 (0,0), (4,0)得,,
    解得:,
    ∴二次函数的表达式为;
    (2)
    ①证明:∵ =,
    ∴顶点C的坐标是(2,﹣2),抛物线的对称轴为直线x=2,
    ∵二次函数与轴交于(0,0),(4,0)两点,
    ∴由抛物线的对称性可知OC=AC,
    ∴∠CAB=∠COD,
    ∵沿折叠后,点落在点的位置,线段与轴交于点,
    ∴ △ABC≌△BC,
    ∴∠CAB=∠,AB=B,
    ∴∠COD=∠,
    ∵∠ODC=∠BD,
    ∴;
    ②∵,
    ∴,
    设点D的坐标为(d,0),
    由两点间距离公式得DC=,
    ∵点与、点不重合,
    ∴0<d<4,
    对于 =来说,
    ∵ a=1>0,
    ∴抛物线开口向上,在顶点处取最小值,当d=2时,的最小值是4,
    ∴当d=2时,DC有最小值为,
    由两点间距离公式得OC=,
    ∴有最小值为,
    ∴的最小值为;
    (3)
    解:∵,
    ∴,
    ∵,
    ∴ ,
    ∵OC=2,
    ∴B=AB=1,
    ∴点B的坐标是(3,0),
    设直线BC的解析式为y=x+,
    把点B(3,0),C(2,﹣2)代人得,
    解得,
    ∴直线BC的解析式为y=2x-6,
    设点的坐标是(p,q),
    ∴线段A的中点为(,),
    由折叠的性质知点(,)在直线BC上,
    ∴=2×-6,
    解得q=2p-4,
    由两点间距离公式得B=,
    整理得=1,
    解得p=2或p=,
    当p=2时,q=2p-4=0,此时点(2,0),很显然不符合题意,
    当p=时,q=2p-4=,此时点(,),符合题意,
    设直线的解析式为y=x+,
    把点B(3,0),(,)代人得,,
    解得,
    ∴直线的解析式为y=x+4,
    联立直线和抛物线得到,,
    解得,,
    ∴直线与二次函数的交点横坐标为或.
    【点睛】
    此题是二次函数综合题,主要考查了待定系数求函数的表达式、两点间距离公式、相似三角形的判定和性质、中点坐标公式、一次函数的图象和性质、二次函数的图象和性质、图形的折叠等知识,难度较大,属于中考压轴题,数形结合是解决此问题的关键.
    42.(2021·江苏扬州·中考真题)如图,在平面直角坐标系中,二次函数的图像与x轴交于点.、,与y轴交于点C.

    (1)________,________;
    (2)若点D在该二次函数的图像上,且,求点D的坐标;
    (3)若点P是该二次函数图像上位于x轴上方的一点,且,直接写出点P的坐标.
    【答案】(1)-2,-3;(2)(,6)或(,6);(3)(4,5)
    【解析】
    【分析】
    (1)利用待定系数法求解即可;
    (2)先求出△ABC的面积,设点D(m,),再根据,得到方程求出m值,即可求出点D的坐标;
    (3)分点P在点A左侧和点P在点A右侧,结合平行线之间的距离,分别求解.
    【详解】
    解:(1)∵点A和点B在二次函数图像上,
    则,解得:,
    故答案为:-2,-3;
    (2)连接BC,由题意可得:
    A(-1,0),B(3,0),C(0,-3),,
    ∴S△ABC==6,
    ∵S△ABD=2S△ABC,设点D(m,),
    ∴,即,
    解得:x=或,代入,
    可得:y值都为6,
    ∴D(,6)或(,6);

    (3)设P(n,),
    ∵点P在抛物线位于x轴上方的部分,
    ∴n<-1或n>3,
    当点P在点A左侧时,即n<-1,
    可知点C到AP的距离小于点B到AP的距离,
    ∴,不成立;
    当点P在点B右侧时,即n>3,
    ∵△APC和△APB都以AP为底,若要面积相等,
    则点B和点C到AP的距离相等,即BC∥AP,
    设直线BC的解析式为y=kx+p,
    则,解得:,
    则设直线AP的解析式为y=x+q,将点A(-1,0)代入,
    则-1+q=0,解得:q=1,
    则直线AP的解析式为y=x+1,将P(n,)代入,
    即,
    解得:n=4或n=-1(舍),

    ∴点P的坐标为(4,5).

    【点睛】
    本题考查了二次函数综合,涉及到待定系数法求函数解析式,三角形面积,平行线之间的距离,一次函数,解题的难点在于将同底的三角形面积转化为点到直线的距离.
    43.(2020·江苏镇江·中考真题)如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.
    (1)求证:∠D=∠2;
    (2)若EF∥AC,∠D=78°,求∠BAC的度数.

    【答案】(1)证明见解析;(2)78°.
    【解析】
    【分析】
    (1)由“SAS”可证△BEF≌△CDA,可得∠D=∠2;
    (2)由(1)可得∠D=∠2=78°,由平行线的性质可得∠2=∠BAC=78°.
    【详解】
    证明:(1)在△BEF和△CDA中,

    ∴△BEF≌△CDA(SAS),
    ∴∠D=∠2;
    (2)∵∠D=∠2,∠D=78°,
    ∴∠D=∠2=78°,
    ∵EF∥AC,
    ∴∠2=∠BAC=78°.
    【点睛】
    本题考查了全等三角形的判定与性质,平行线的性质.证明△BEF≌△CDA是解题的关键
    44.(2020·江苏宿迁·中考真题)【感知】(1)如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:=.
    【探究】(2)如图②,在四边形ABCD中,∠C=∠ADC=90°,点E在边CD上,点F在边AD的延长线上,∠FEG=∠AEB=90°,且=,连接BG交CD于点H.求证:BH=GH.
    【拓展】(3)如图③,点E在四边形ABCD内,∠AEB+∠DEC=180°,且=,过E作EF交AD于点F,若∠EFA=∠AEB,延长FE交BC于点G.求证:BG=CG.

    【答案】(1)见解析   (2)见解析       (3)见解析
    【解析】
    【分析】
    (1)证得∠BEC=∠EAD,证明Rt△AED∽Rt△EBC,由相似三角形的性质得出,则可得出结论;
    (2)过点G作GM⊥CD于点M,由(1)可知,证得BC=GM,证明△BCH≌△GMH(AAS),可得出结论;
    (3)在EG上取点M,使∠BME=∠AFE,过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,证明△AEF∽△EBM,由相似三角形的性质得出,证明△DEF∽△ECN,则,得出,则BM=CN,证明△BGM≌△CGN(AAS),由全等三角形的性质可得出结论.
    【详解】
    (1)∵∠C=∠D=∠AEB=90°,
    ∴∠BEC+∠AED=∠AED+∠EAD=90°,
    ∴∠BEC=∠EAD,
    ∴Rt△AED∽Rt△EBC,
    ∴;
    (2)如图1,过点G作GM⊥CD于点M,

    同(1)的理由可知:,
    ∵,,
    ∴,
    ∴CB=GM,
    在△BCH和△GMH中,

    ∴△BCH≌△GMH(AAS),
    ∴BH=GH;
    (3)证明:如图2,在EG上取点M,使∠BME=∠AFE,

    过点C作CN∥BM,交EG的延长线于点N,则∠N=∠BMG,
    ∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,
    ∴∠EAF=∠BEM,
    ∴△AEF∽△EBM,
    ∴,
    ∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,
    而∠EFA=∠AEB,
    ∴∠CED=∠EFD,
    ∵∠BMG+∠BME=180°,
    ∴∠N=∠EFD,
    ∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,
    ∴∠EDF=∠CEN,
    ∴△DEF∽△ECN,
    ∴,
    又∵,
    ∴,
    ∴BM=CN,
    在△BGM和△CGN中,

    ∴△BGM≌△CGN(AAS),
    ∴BG=CG.
    【点睛】
    本题考查了直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,平行线的性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.
    45.(2020·江苏南京·中考真题)如图,在和中,D、分别是AB、上一点,.

    (1)当时,求证: 证明的途径可以用如框图表示,请填写其中的空格 

    (2)当时,判断与是否相似,并说明理由
    【答案】(1),;(2)相似,理由见解析
    【解析】
    【分析】
    (1)根据证得△△,推出,再证明结论;
    (2)作DE∥BC,∥,利用三边对应成比例证得△,再推出,证得,即可证明△△.
    【详解】
    (1)∵,
    ∴,
    ∵,
    ∴,
    ∴△△,
    ∴,
    ∵,
    ∴△△,
    故答案为:,;
    (2)如图,过点D、分别作DE∥BC,∥,
    DE交AC于点E,交于点,

    ∵DE∥BC,
    ∴△△,
    ∴,
    同理:,
    又,
    ∴,
    ∴,
    同理:,
    ∴,
    即,
    ∴,
    又,
    ∴,
    ∴△△,
    ∴,
    ∵DE∥BC,
    ∴,
    同理:,
    ∴,
    又,
    ∴△△.
    【点睛】
    本题考查了相似三角形的判定和性质,平行线的性质,比例的性质,正确作出辅助线是解答第2问的关键.
    46.(2020·江苏南通·中考真题)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.
    (1)如图①,若点P恰好在边BC上,连接AP,求的值;
    (2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.

    【答案】(1);(2)BF=3.
    【解析】
    【分析】
    (1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.
    (2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4-x.证明△EGP∽△PHD,推出,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.
    【详解】
    解:(1)如图①中,取DE的中点M,连接PM.

    ∵四边形ABCD是矩形,
    ∴∠BAD=∠C=90°,
    由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,
    在Rt△EPD中,∵EM=MD,
    ∴PM=EM=DM,
    ∴∠3=∠MPD,
    ∴∠1=∠3+∠MPD=2∠3,
    ∵∠ADP=2∠3,
    ∴∠1=∠ADP,
    ∵AD∥BC,
    ∴∠ADP=∠DPC,
    ∴∠1=∠DPC,
    ∵∠MOP=∠C=90°,
    ∴△POM∽△DCP,
    ∴,
    ∴.
    (2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x

    ∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,
    ∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,
    ∴∠EPG=∠PDH,
    ∴△EGP∽△PHD,
    ∴,
    ∴PG=2EG=3x,DH=AG=4+x,
    在Rt△PHD中,∵PH2+DH2=PD2,
    ∴(3x)2+(4+x)2=122,
    解得:x=(负值已经舍弃),
    ∴BG=4﹣=,
    在Rt△EGP中,GP=,
    ∵GH∥BC,
    ∴△EGP∽△EBF,
    ∴,
    ∴,
    ∴BF=3.
    【点睛】
    本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.
    47.(2020·江苏淮安·中考真题)【初步尝试】
    (1)如图①,在三角形纸片中,,将折叠,使点与点重合,折痕为,则与的数量关系为 ;

    【思考说理】
    (2)如图②,在三角形纸片中,,,将折叠,使点与点重合,折痕为,求的值.

    【拓展延伸】
    (3)如图③,在三角形纸片中,,,,将沿过顶点的直线折叠,使点落在边上的点处,折痕为.
    ①求线段的长;
    ②若点是边的中点,点为线段上的一个动点,将沿折叠得到,点的对应点为点,与交于点,求的取值范围.

    【答案】(1);(2);(3)①;②.
    【解析】
    【分析】
    (1)先根据折叠的性质可得,再根据平行线的判定可得,然后根据三角形中位线的判定与性质即可得;
    (2)先根据等腰三角形的性质可得,再根据折叠的性质可得,从而可得,然后根据相似三角形的判定与性质可得,从而可求出BM的长,最后根据线段的和差可得AM的长,由此即可得出答案;
    (3)①先根据折叠的性质可得,从而可得,再根据等腰三角形的定义可得,然后根据相似三角形的判定与性质可得,从而可得BM、AM、CM的长,最后代入求解即可得;
    ②先根据折叠的性质、线段的和差求出,的长,设,从而可得,再根据相似三角形的判定与性质可得,然后根据x的取值范围即可得.
    【详解】
    (1),理由如下:
    由折叠的性质得:



    是的中位线
    点M是AB的中点

    故答案为:;
    (2)

    由折叠的性质得:
    ,即
    在和中,

    ,即
    解得


    (3)①由折叠的性质得:
    ,即


    在和中,

    ,即
    解得



    解得;
    ②如图,由折叠的性质可知,,,

    点O是边的中点


    设,则
    点为线段上的一个动点
    ,其中当点P与点重合时,;当点P与点O重合时,


    ,即
    在和中,




    则.

    【点睛】
    本题考查了折叠的性质、三角形的中位线定理、等腰三角形的定义、相似三角形的判定与性质等知识点,较难的是题(3)②,正确设立未知数,并找出两个相似三角形是解题关键.
    48.(2020·江苏南京·中考真题)如图①,要在一条笔直的路边上建一个燃气站,向同侧的A、B两个城镇分别发铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.

    (1)如图②,作出点A关于的对称点,线与直线的交点C的位置即为所求, 即在点C处建气站, 所得路线ACB是最短的,为了让明点C的位置即为所求,不妨在直线上另外任取一点,连接,, 证明, 请完成这个证明.

    (2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域请分别始出下列两种情形的铺设管道的方案(不需说明理由),
    ①生市保护区是正方形区域,位置如图③所示
    ②生态保护区是圆形区域,位置如图④所示.

    【答案】(1)证明见解析;(2)①见解析,②见解析
    【解析】
    【分析】
    (1)连接,利用垂直平分线的性质,得到,利用三角形的三边关系,即可得到答案;
    (2)由(1)可知,在点C处建燃气站,铺设管道的路线最短.分别对①、②的道路进行设计分析,即可求出最短的路线图.
    【详解】
    (1)证明:如图,连接

    ∵点A、关于l对称,点C在l上
    ∴,
    ∴,
    同理,
    在中,有
    ∴;
    (2)解:①在点C处建燃气站,铺设管道的最短路线是AC+CD+DB(如图,其中D是正方形的顶点).

    ②在点C处建燃气站,铺设管道的最短路线是(如图,其中CD、BE都与圆相切).

    【点睛】
    本题考查了切线的应用,最短路径问题,垂直平分线的性质,解题的关键是熟练掌握题意,正确确定点C的位置,从而确定铺设管道的最短路线.
    49.(2020·江苏无锡·中考真题)如图,在矩形中,,,点为边上的一点(与、不重合)四边形关于直线的对称图形为四边形,延长交于点,记四边形的面积为.

    (1)若,求的值;
    (2)设,求关于的函数表达式.
    【答案】(1);(2)
    【解析】
    【分析】
    (1)解Rt△ADE可得和AE的长,然后根据平行线的性质、对称的性质可得,进而可判断为等边三角形,再根据S=S△APE+S△ADE解答即可;
    (2)过点作于点F,如图,则四边形ADEF是矩形,由(1)得,从而可得,设,则,然后在中根据勾股定理即可利用x表示a,然后根据S=S△APE+S△ADE即可求出结果.
    【详解】
    解:(1)在Rt△ADE中,∵,,
    ∴,∴,
    ∴,
    ∵,∴,
    ∵四边形关于直线的对称图形为四边形,
    ∴,
    ∵,
    ∴,
    ∴为等边三角形,
    ∴S=S△APE+S△ADE=;

    (2)过点作于点F,如图,则四边形ADEF是矩形,
    ∴,,
    由(1)可知,,
    ∴,
    设,则,
    在中,由勾股定理,得:,解得:,
    ∴S=S△APE+S△ADE=.

    【点睛】
    本题考查了矩形的判定和性质、轴对称的性质、等边三角形的判定和性质、勾股定理以及解直角三角形等知识,考查的知识点多、综合性强,熟练掌握上述知识是解题的关键.
    相关试卷

    2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷): 这是一份2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷),文件包含专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    2020-2022年山东中考数学3年真题汇编 专题13 几何图形初步与相交线、平行线(学生卷+教师卷): 这是一份2020-2022年山东中考数学3年真题汇编 专题13 几何图形初步与相交线、平行线(学生卷+教师卷),文件包含专题13几何图形初步与相交线平行线2020-2022中考数学真题分项汇编山东专用解析版docx、专题13几何图形初步与相交线平行线2020-2022中考数学真题分项汇编山东专用原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。

    2020-2022年江苏中考数学3年真题汇编 专题24 概率(学生卷+教师卷): 这是一份2020-2022年江苏中考数学3年真题汇编 专题24 概率(学生卷+教师卷),文件包含专题24概率-三年2020-2022中考数学真题分项汇编江苏专用解析版docx、专题24概率-三年2020-2022中考数学真题分项汇编江苏专用原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020-2022年江苏中考数学3年真题汇编 专题13 平行线、展开图、对称性(学生卷+教师卷)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map