所属成套资源:2020-2022近三年浙江中考数学真题及答案解析
2020-2022年浙江中考数学3年真题汇编 专题07 二次函数(学生卷+教师卷)
展开
这是一份2020-2022年浙江中考数学3年真题汇编 专题07 二次函数(学生卷+教师卷),文件包含专题07二次函数-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题07二次函数-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
专题07 二次函数 一、单选题(共0分)1.(2022年浙江杭州)已知二次函数(a,b为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x轴的交点位于y轴的两侧;命题④:该函数的图像的对称轴为直线.如果这四个命题中只有一个命题是假命题,则这个假命题是( )A.命题① B.命题② C.命题③ D.命题④2.(2022年浙江宁波)点A(m-1,y1),B(m,y2)都在二次函数y=(x-1)2+n的图象上.若y1<y2,则m的取值范围为( )A. B. C. D.3.(2020年浙江湖州)把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是( )A.y=-3 B.y=+3 C.y= D.y=4.(2020年浙江温州)已知(﹣3,),(﹣2,),(1,)是抛物线上的点,则( )A. B. C. D.5.(浙江衢州2020年)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位6.(2022年浙江绍兴)已知抛物线的对称轴为直线,则关于x的方程的根是( )A.0,4 B.1,5 C.1,-5 D.-1,57.(2022年浙江温州)已知点都在抛物线上,点A在点B左侧,下列选项正确的是( )A.若,则 B.若,则C.若,则 D.若,则8.(2020年浙江杭州)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,( )A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0 D.若h=7,则a>09.(2022年浙江舟山)已知点,在直线(k为常数,)上,若的最大值为9,则c的值为( )A. B.2 C. D.110.(浙江杭州2021年)在“探索函数的系数,,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,,,,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为( )A. B. C. D.11.(浙江杭州2021年)已知和均是以为自变量的函数,当时,函数值分别为和,若存在实数,使得,则称函数和具有性质.以下函数和具有性质的是( )A.和B.和C.和D.和12.(浙江绍兴2021年)关于二次函数的最大值或最小值,下列说法正确的是( )A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值613.(2020年浙江宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是( )A.abc<0 B.4ac﹣b2>0C.c﹣a>0 D.当x=﹣n2﹣2(n为实数)时,y≥c14.(2020年浙江杭州)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,( )A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=015.(2020·浙江台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t (单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是( ) A.B.C. D.16.(浙江湖州2021年)已知抛物线与轴的交点为和,点,是抛物线上不同于的两个点,记的面积为的面积为.有下列结论:①当时,;②当时,;③当时,;④当时,.其中正确结论的个数是( )A.1 B.2 C.3 D.4二、填空题17.(浙江台州2021年)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=_____.18.(浙江湖州2021年)已知在平面直角坐标系中,点的坐标为是抛物线对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定.若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是____.三、解答题19.(2022年浙江湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上,抛物线经过A,C两点,与x轴交于另一个点D. (1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.20.(浙江湖州2021年)如图,已知经过原点的抛物线与轴交于另一点A(2,0).(1)求的值和抛物线顶点的坐标;(2)求直线的解析式. 21.(2020年浙江温州)已知抛物线经过点(1,﹣2),(﹣2,13).(1)求a,b的值;(2)若(5,),(m,)是抛物线上不同的两点,且,求m的值. 22.(2022年浙江宁波)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y千克与每平方米种植的株数x(,且x为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y关于x的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克? 23.(浙江宁波2021年中考数学试卷)如图,二次函数(a为常数)的图象的对称轴为直线. (1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式. 24.(2022年浙江绍兴)已知函数(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值. 25.(2022年浙江嘉兴)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围. 26.(2020年浙江宁波)如图,在平面直角坐标系中,二次函数y=ax2+4x﹣3图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式. 27.(2022年浙江金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为,部分对应值如表:售价x(元/千克)…2.533.54…需求量(吨)…7.757.26.555.8… ②该蔬菜供给量(吨)关于售价x(元/千克)的函数表达式为,函数图象见图1.③1~7月份该蔬菜售价(元/千克),成本(元/千克)关于月份t的函数表达式分别为,,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润. 28.(浙江温州2021年)已知抛物线经过点.(1)求抛物线的函数表达式和顶点坐标.(2)直线交抛物线于点,,为正数.若点在抛物线上且在直线下方(不与点,重合),分别求出点横坐标与纵坐标的取值范围, 29.(浙江衢州2021年)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值. 30.(浙江绍兴2021年)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径,且点A,B关于y轴对称,杯脚高,杯高,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体所在抛物线形状不变,杯口直径,杯脚高CO不变,杯深与杯高之比为0.6,求的长. 31.(浙江杭州2021年)在直角坐标系中,设函数(,是常数,).(1)若该函数的图象经过和两点,求函数的表达式,并写出函数图象的顶点坐标.(2)写出一组,的值,使函数的图象与轴有两个不同的交点,并说明理由.(3)已知,当(,是实数,)时,该函数对应的函数值分别为,.若,求证. 32.(浙江金华2021年)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,,.问:顶部F是否会碰到水柱?请通过计算说明. 33.(2022年浙江杭州)设二次函数(b,c是常数)的图像与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数的表达式及其图像的对称轴.(2)若函数的表达式可以写成(h是常数)的形式,求的最小值.(3)设一次函数(m是常数).若函数的表达式还可以写成的形式,当函数的图像经过点时,求的值. 34.(2020年浙江杭州)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值. 35.(2022·浙江丽水)如图,已知点在二次函数的图像上,且. (1)若二次函数的图像经过点.①求这个二次函数的表达式;②若,求顶点到的距离;(2)当时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.
相关试卷
这是一份2020-2022年浙江中考数学3年真题汇编 专题18 概率(学生卷+教师卷),文件包含专题18概率-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题18概率-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份2020-2022年浙江中考数学3年真题汇编 专题13 圆基础题型汇总(学生卷+教师卷),文件包含专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题13圆基础题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。
这是一份2020-2022年浙江中考数学3年真题汇编 专题08 二次函数压轴题型汇总(学生卷+教师卷),文件包含专题08二次函数压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用解析版docx、专题08二次函数压轴题型汇总-三年2020-2022中考数学真题分项汇编浙江专用原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。