![普通高中数学学业水平合格性考试标准示范卷8含答案第1页](http://img-preview.51jiaoxi.com/3/3/13679079/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![普通高中数学学业水平合格性考试标准示范卷8含答案第2页](http://img-preview.51jiaoxi.com/3/3/13679079/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![普通高中数学学业水平合格性考试标准示范卷8含答案第3页](http://img-preview.51jiaoxi.com/3/3/13679079/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:全套普通高中数学学业水平合格性考试标准示范卷含答案
普通高中数学学业水平合格性考试标准示范卷8含答案
展开
这是一份普通高中数学学业水平合格性考试标准示范卷8含答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
普 通 高 中 学 业 水 平 合 格 性 考 试标准示范卷 (八) (时间90分钟,总分150分,本卷共4页)一、选择题(本大题共15小题,每小题6分,共90分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A={x|1<x<3},则∁UA=( )A.{x|x<1或x>3} B.{x|x≥3}C.{x|x≤1或x≥3} D.{x|x≤1}C ∁UA={x|x≤1,或x≥3}.2.函数f (x)=的定义域是( )A. B.C. D.D 由已知,2x-1≥0,解得x≥.3.函数f (x)=sin的最小正周期是( )A. B.π C.2π D.4πD f (x)的最小正周期为T==4π.4.已知向量a=(1,-2),b=(3,5),则2a+b=( )A.(4,3) B.(5,1) C.(5,3) D.(7,8)B 2a+b=2(1,-2)+(3,5)=(2+3,-4+5)=(5,1).5.在△ABC中,角A,B,C所对的边分别为a,b,c.若A=60°,b=2,c=3,则a=( )A. B. C.4 D.A ∵A=60°,b=2,c=3,由余弦定理,得a2=b2+c2-2bccos A=4+9-2×2×3×=7,∴a=.6.若tan α=2,则tan的值为( )A.- B. C.-3 D.3A ∵tan α=2,∴tan===-.7.已知复数z=(i为虚数单位),则复数z在复平面内对应的点为( )A. B.(1,1)C. D.(1,-1)A z=====+i,所以复数z在复平面内对应的点的坐标为.故选A.8.如果两个球的表面积之比为4∶9,那么这两个球的体积之比为( )A.2∶3 B.4∶9 C.8∶27 D.16∶81C 设两球的半径分别为r1,r2,则=,∴=,所以两球的体积比为===.9.函数y=log3(3x)的图象大致为( )A BC DA 由函数性质知y=log3(3x)为增函数,故排除B,D;当x=时,y=log3=0,即函数过点,排除C,故选A.10.某校对学生在寒假中参加社会实践活动的时间(单位:小时)进行调查,并根据统计数据绘制了如图所示的频率分布直方图,其中实践活动时间的范围是[9,14],数据的分组依次为:[9,10),[10,11),[11,12),[12,13),[13,14].已知活动时间在[9,10)内的人数为300,则活动时间在[11,12)内的人数为( )A.600 B.800 C.1 000 D.1 200D 活动时间在[9,10)内的频率为0.10,在[11,12)内的频率为0.40,设活动时间在[11,12)内的人数为x,则=,解得x=1 200.11.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数和次品件数,则下列每对事件互斥但不对立的是( )A.“至少有1件次品”与“全是次品”B.“恰好有1件次品”与“恰好有2件次品”C.“至少有1件次品”与“全是正品”D.“至少有1件正品”与“至少有1件次品”B 从一堆产品中任取2件,基本事件为“全是正品”,“一件正品,一件次品”,“全是次品”,共3种情况,故选B.12.函数y=ax-1-3(a>0,且a≠1)的图象恒过定点( )A.(0,-3) B.(0,-2) C.(1,-3) D.(1,-2)D 令x-1=0,则x=1,此时,y=a0-3=-2,∴图象过定点(1,-2).13.从3本不同的数学书和1本语文书中任取两本,则取出的两本书中有语文书的概率为( )A. B. C. D.A 记3本数学书为a,b,c,1本语文书为d,从中任取两本,共有取法:ab,ac,ad,bc,bd,cd,共6种情况,其中有语文书有3种情况,故所求概率为P==.14.一个扇形的弧长与面积的数值都是3,则该扇形圆心角的弧度数为( )A. B. C. D.2C 设扇形的圆心角的弧度数为α,半径为r,则解得15.下图是正方体的平面展开图,在这个正方体中,有以下判断:①BF与DN平行;②CM与BN是异面直线;③DF与BN垂直;④AE与DN是异面直线.则判断正确的个数是( )A.1 B.2 C.3 D.4B 把平面展开图折起,得到如图所示的正方体.则BF与DN是异面直线,CM与BN平行,DF与BN垂直,AE与DN是异面直线,故正确个数为2.二、填空题(本大题共4小题,每小题6分,共24分)16.已知函数f (x)=则f (-2)+f (2)的值为________.-3 f (-2)=3×(-2)-1=-7,f (2)=22=4,∴f (-2)+f (2)=-7+4=-3.17.已知向量a与b的夹角为,且|a|=3,|b|=4,则a·b的值为________.-6 a·b=|a|·|b|·cos〈a,b〉=3×4×cos =-6.18.如图,在长方形ABCD中,AB=2,AD=1,E是CD的中点,沿AE将△DAE向上折起,使D到D′的位置,且平面AED′⊥平面ABCE,则直线AD′与平面ABC所成角的正弦值为________. 由题意,知△AED′为等腰直角三角形,∵平面AED′⊥平面ABCE,∴AD′在底面的射影在AE上,∴∠D′AE为直线AD′与平面ABC所成角,且∠D′AE=45°,其正弦值为,故答案.19.已知函数f (x)对任意x,y∈R,都有f (x+y)=f (x)+f (y)成立.有以下结论:①f (0)=0;②f (x)是R上的偶函数;③若f (2)=2,则f (1)=1;④当x>0时,恒有f (x)<0,则函数f (x)在R上单调递增.则上述所有正确结论的编号是________.①③ ①令x=y=0,则f (0)=f (0)+f (0),解得f (0)=0,①正确;②令y=-x,则f (0)=f (x)+f (-x)=0,∴f (-x)=-f (x),∴f (x)是R上的奇函数,②错误;③令x=y=1,则f (2)=f (1)+f (1)=2f (1)=2,∴f (1)=1,③正确;④设x1>x2,则x1-x2>0,∴f (x1-x2)=f (x1)+f (-x2)<0,则f (x1)<-f (-x2)=f (x2),∴f (x)在R上单调递减,④错误.故正确结论的编号为①③.三、解答题(本大题共3小题,共36分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图,四棱柱ABCDA1B1C1D1中,底面ABCD为平行四边形,E,F分别为BC,CC1的中点.证明:EF∥平面AB1D1.[证明] 连接BC1(图略),∵E,F分别为BC,CC1的中点,∴EF∥BC1,又BC1∥AD1,∴EF∥AD1,∵EF⊄平面AB1D1,AD1⊂平面AB1D1,∴EF∥平面AB1D1.21.(14分)已知函数f (x)=cos2-sin2-a,a∈R.(1)求函数f (x)的单调递增区间;(2)若函数f (x)在上有零点,求a的取值范围.[解] (1)f (x)=cos2-sin2-a=cos x-a,当2kπ-π≤x≤2kπ,k∈Z时,f (x)单调递增,∴函数f (x)的单调递增区间为[2kπ-π,2kπ],k∈Z.(2)函数f (x)在上有零点,也就是cos x=a在上有解.∵当-≤x≤时,cos x∈.∴a的取值范围是.22.(14分)树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65],得到的频率分布直方图如图所示.(1)求a的值;(2)求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(3)现在要从年龄较小的第1,2组中用分层随机抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组中恰好抽到2人的概率.[解] (1)由10×(0.010+0.015+a+0.030+0.010)=1,得a=0.035.(2)平均数为20×0.1+30×0.15+40×0.35+50×0.3+60×0.1=41.5(岁);设中位数为x,则10×0.010+10×0.015+(x-35)×0.035=0.5,故x≈42.1(岁).即中位数为42.1.(3)第1,2组的人数分别为20人,30人,从第1,2组中用分层随机抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为a1,a2,b1,b2,b3.则从这5人中随机抽取3人,为(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3),共10个基本事件,第2组中恰好抽到2人的情况有6种,故从而第2组中恰好抽到2人的概率P==0.6.
相关试卷
这是一份普通高中数学学业水平合格性考试标准示范卷7含答案,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份普通高中数学学业水平合格性考试标准示范卷6含答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份普通高中数学学业水平合格性考试标准示范卷4含答案,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)