数学21.4 二次函数的应用精品同步达标检测题
展开2021-2022学年九年级数学上册尖子生同步培优题典【沪科版】
专题21.13二次函数的应用:拱桥问题(重难点培优)
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020秋•滑县期中)有一拱桥洞呈抛物线,这个桥洞的最大高度是16m,跨度为40m,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )
A.yx B.yx
C.y D.yx+16
2.(2020秋•天长市期末)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为yx2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )
A.﹣20m B.20m C.10m D.﹣10m
3.(2020•濮阳模拟)小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为( )
A.14 B.11 C.6 D.3
4.(2020秋•武昌区校级期中)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面上升1.5m,水面宽度为( )
A.1m B.2m C.m D.m
5.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )
A.4米 B.5米 C.2米 D.7米
6.(2020秋•硚口区期中)如图,有一抛物线形拱桥,当拱顶离水面2m时,水面宽4m,当水面宽增加(24)m时,则水面应下降的高度是( )
A.2m B.1m C.m D.(2)m
7.(2020秋•防城区期中)某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为yx2,当涵洞水面宽AB为16m时,涵洞顶点O至水面的距离为( )
A.﹣6m B.12m C.16m D.24m
8.(2020秋•湖里区校级月考)如图,我们把一个半圆与抛物线的一部分围成的封闭图象称为“果园”,已知点A,B,C,D分别是“果园”与坐标轴的交点,抛物线的解析式为y=x2﹣4x﹣5,AB为半圆是直径,则这个“果园”被y轴截得的弦CD的长为( )
A.8 B.5 C.5 D.5
9.(2021春•姑苏区校级月考)苏州市“东方之门”是由两栋超高层建筑组成的双塔连体建筑,“门”的造型是东方之门的立意基础,“门”的内侧曲线呈抛物线型,如图1,两栋建筑第八层由一条长60m的连桥连接,在该抛物线两侧距连桥150m处各有一窗户,两窗户的水平距离为30m,如图2,则此抛物线顶端O到连桥AB距离为( )
A.180m B.200m C.220m D.240m
10.(2020秋•铜陵期中)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶,试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少( )个时,网球可以落入桶内.
A.7 B.8 C.9 D.10
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2021•二道区校级一模)如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为8m,AB=24m,D,E为拱桥底部的两点,且DE∥AB,若DE的长为36m,则点E到直线AB的距离为 .
12.(2021•肥东县二模)如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等,小强骑自行车从桥的一端O沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需 秒.
13.(2020秋•兴城市期末)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣2x2+4x(单位:米)的一部分,则水喷出的最大高度是 米.
14.(2020秋•郫都区期末)如图,桥洞的拱形是抛物线,当水面宽AB为12m时,桥洞顶部离水面4m.若选取拱形顶点C为坐标原点,以水平方向为x轴,建立平面直角坐标系,此时该抛物线解析式为 .
15.(2020秋•白银期末)中国贵州省省内的射电望远镜(FAST)是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点P到口径面AB的距离是100米,若按如图(2)所示建立平面直角坐标系,则抛物线的解析式是 .
16.(2021•广州模拟)如图1,AO,BC是两根垂直于地面的立柱,且长度相等.在两根立柱之间悬挂着一根绳子,如图2建立坐标系,绳子形如抛物线yx+4的图象.因实际需要,在OA与BC间用一根高为2.5m的立柱MN将绳子撑起,若立柱MN到OA的水平距离为3m,MN左侧抛物线的最低点D与MN的水平距离为1m,则点D到地面的距离为 .
17.(2020秋•江都区期末)道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E,点P)以及点A,点B落在同一条抛物线上,若第1根栏杆涂色部分(EF)与第2根栏杆未涂色部分(PQ)长度相等,则EF的长度是 .
18.(2021•工业园区一模)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州历史文化.如图②,“东方之门”的内侧轮廊是由两条抛物线组成的,已知其底部宽度均为80m,高度分别为300m和225m,则在内侧抛物线顶部处的外侧抛物线的水平宽度(AB的长)为 m.
三.解答题(共6小题)
19.(2021•长沙模拟)疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y(单位:人)随时间x(单位:分钟)的变化情况的图象是二次函数的一部分,如图所示.
(1)求y与x之间的函数解析式;
(2)从7:00开始,需要多少分钟校门口的学生才能全部进校?
(3)现学校通过调整校门口的入校通道,提高体温检测效率.经过调整,现在每分钟可以多通过2人,请问所有学生能够在7点30分完成进校吗?请说明理由.
20.(2021•杭州模拟)如图所示,某河面上有一座抛物线形拱桥,桥下水面在正常水位AB时,宽为20m,若水位上升3m,水面就会达到警戒线CD,这时水面宽为10m.
(1)建立适当的平面直角坐标系并求出抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时就能到达拱桥的拱顶?
21.(2021•合肥三模)某游乐园要建造一个直径为20m的圆形喷水池,计划在喷水池周边安装一圈喷水头,使喷出的水柱距池中心4m处达到最高,最大高度为6m.如图,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)若要在喷水池的中心设计一个装饰物,使各方向喷出的水柱在此汇合,则这个装饰物的高度为多少,请计算说明理由.
(2)为了增加喷水池的观赏性,游乐园新增加了一批向上直线型喷射的喷水头,这些喷水头以水池为圆心,分别以1.5米,3米,4.5米,6米,7.5米为半径呈圆形放置,为了保证喷水时互不干扰,防止水花四溅,且所有直线喷水头射程高度均为一致,则直线型喷水头最高喷射高度为多少米?(假设所有喷水头高度忽略不计).
22.(2020秋•肥西县期末)某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.已知跳板AB长为2米,跳板距水面CD高BC为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度4米,现以CD为横轴,CB为纵轴建立直角坐标系.
(1)求这条抛物线的解析式;
(2)求运动员落水点与点C的距离.
23.(2020秋•海淀区校级月考)小宇遇到了这样一个问题:
如图是一个单向隧道的断面,隧道顶MCN是一条抛物线的一部分,经测量,隧道顶的跨度MN为4m,最高处到地面的距离CO为4m,两侧墙高AM和BN均为3m,今有宽2.4m的卡车在隧道中间行驶,如果卡车载物后的最高点E到隧道顶面对应的点D的距离应不小于0.6m,那么卡车载物后的限高应是多少米?(精确到0.1m)
为解决这个问题,小宇以AB中点O为原点,建立了如图所示的平面直角坐标系,根据上述信息,设抛物线的表达式为y=ax2+c.
(1)写出M、C、N、F四个点的坐标;
(2)求出抛物的表达式;
(3)利用求出的表达式,帮助小宇解决这个问题.
24.(2020秋•玄武区期末)某公司销售一种服装,已知每件服装的进价为60元,售价为120元.为了促销,公司推出如下促销方案:如果一次购买的件数超过20件,那么每超出一件,每件服装的售价就降低2元,但每件服装的售价不得低于a元.该公司某次销售该服装所获得的总利润y(元)与购买件数x(件)之间的函数关系如图所示.
(1)当x=25时,y的值为 ;
(2)求a的值;
(3)求y关于x的函数表达式;
(4)若一次购买的件数x不超过m件,探索y的最大值,直接写出结论.(可以用含有m的代数式表示)
初中数学沪科版八年级下册第18章 勾股定理综合与测试一课一练: 这是一份初中数学沪科版八年级下册第18章 勾股定理综合与测试一课一练,文件包含专题184勾股定理与弦图问题重难点培优解析版docx、专题184勾股定理与弦图问题重难点培优原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
2020-2021学年第21章 二次函数与反比例函数21.4 二次函数的应用优秀巩固练习: 这是一份2020-2021学年第21章 二次函数与反比例函数21.4 二次函数的应用优秀巩固练习,文件包含专题2112二次函数的应用抛物型问题重难点培优解析版docx、专题2112二次函数的应用抛物型问题重难点培优原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
沪科版九年级上册21.4 二次函数的应用精品课堂检测: 这是一份沪科版九年级上册21.4 二次函数的应用精品课堂检测,文件包含专题2111二次函数的应用面积问题重难点培优解析版docx、专题2111二次函数的应用面积问题重难点培优原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。