- 2023湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试英语试题含答案、听力 试卷 1 次下载
- 2023湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试语文试题扫描版含答案 试卷 1 次下载
- 2023湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试政治试题含答案 试卷 0 次下载
- 2023湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试地理试题含答案 试卷 0 次下载
- 2023湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试历史试题含答案 试卷 0 次下载
2023湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试数学试题含答案
展开绝密★启用前
五市十校教研教改共同体 三湘名校教育联盟 湖湘名校教育联合体
2022年下学期高二期中考试
数学
命题:双峰一中数学备课组 审题:南县一中 郭劲松 永州一中数学备课组
本试卷共4页。全卷满分150分,考试时间120分钟。
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如有改动,用橡皮擦干净后,再选涂其他答案;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A. B. C. D.
2.已知圆C的圆心坐标为,且过坐标原点,则圆C的方程为( )
A. B.
C. D.
3.党的十八大报告指出,必须坚持在发展中保障和改善民生,不断实现人民对美好生活的向往,为响应中央号召,某社区决定在现有的休闲广场内修建一个半径为4m的圆形水池来规划喷泉景观.设计如下:在水池中心竖直安装一根高出水面为2m的喷水管(水管半径忽略不计),它喷出的水柱呈抛物线型,要求水柱在与水池中心水平距离为处达到最高,且水柱刚好落在池内,则水柱的最大高度为( )
A. B. C. D.
4.已知是等比数列的前n项和,,,成等差数列,则下列结论正确的是( )
A. B. C. D.
5.已知幂函数的图象是等轴双曲线C,且它的焦点在直线上,则下列曲线中,与曲线C的实轴长相等的双曲线是( )
A. B. C. D.
6.已知函数,下列说法正确的是( )
A.函数的最小正周期是 B.函数的最大值为
C.函数的图象关于点对称 D.函数在区间上单调递增
7.如图水平放置的边长为1的正方形沿x轴正向滚动,初始时顶点A在坐标原点,(沿x轴正向滚动指的是先以顶点B为中心顺时针旋转,再以顶点C为中心顺时针旋转,如此继续),设顶点的轨迹方程式,则( )
A.0 B.1 C. D.
8.已知三棱锥中,,,,若二面角的大小为120°,则三棱锥的外接球的表面积为( )
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.下列说法正确的是( )
A.命题“,”的否定为“,”
B.在中,若“”,则“”
C.若,则的充要条件是
D.若直线与平行,则或2
10.已知各项均为正数的等差数列单调递增,且,则( )
A.公差d的取值范围是 B.
C. D.的最小值为1
11.已知直线l与抛物线()交于A,B两点,,,则下列说法正确的是( )
A.若点D的坐标为,则
B.直线过定点
C.D点的轨迹方程为(原点除外)
D.设与x轴交于点M,则的面积最大时,直线的斜率为1
12.在正方体中,,点M在正方体内部及表面上运动,下列说法正确的是( )
A.若M为棱的中点,则直线平面
B.若M在线段上运动,则的最小值为
C.当M与重合时,以M为球心,为半径的球与侧面的交线长为
D.若M在线段上运动,则M到直线的最短距离为
三、填空题:本题共4小题,每小题5分,共20分.
13.某中学高一年级有600人,高二年级有480人,高三年级有420人,因新冠疫情防控的需要,现用分层抽样从中抽取一个容量为300人的样本进行核酸检测,则高三年级被抽取的人数为___________.
14.设双曲线C:(,)的左、右焦点分别为、,P是渐近线上一点,且满足,,则双曲线C的离心率为___________.
15.已知动点在运动过程中总满足关系式,记,,则面积的最大值为___________.
16.意大利数学家斐波那契在研究兔子繁殖问题时发现了数列1,1,2,3,5,8,13,…,数列中的每一项被称为斐波那契数,用符号表示(),已知,,().
(1)若,则___________(2分);
(2)若,则___________(3分).
四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.
17.(本小题满分10分)
已知双曲线C:(,)的左右焦点分别为,,点M在双曲线C的右支上,且,离心率.
(1)求双曲线C的标准方程;
(2)若,求的面积.
18.(本小题满分12分)
10月9日晚,2022年世界乒乓球团体锦标赛在中国成都落幕.中国队女团与男团分别完成了五连冠与十连冠的霸业.乒乓球运动在我国一直有着光荣历史,始终领先世界水平,被国人称为“国球”,在某次团体选拔赛中,甲乙两队进行比赛,采取五局三胜制(即先胜三局的团队获得比赛的胜利),假设在一局比赛中,甲队获胜的概率为0.6,乙队获胜的概率为0.4,各局比赛结果相对独立.
(1)求这场选拔赛三局结束的概率;
(2)若第一局比赛乙队获胜,求比赛进入第五局的概率.
19.(本小题满分12分)
已知锐角三角形中,角A,B,C所对的边分别为a,b,c,向量,,且.
(1)求角B的大小;
(2)若,求面积的取值范围.
20.(本小题满分12分)
已知数列满足,且,数列是各项均为正数的等比数列,为的前n项和,满足,.
(1)求数列的通项公式;
(2)设,记数列的前n项和为,求的取值范围.
21.(本小题满分12分)
如图,在四棱锥中,,,,平面平面,E为中点.
(1)求证:面;
(2)求证:面;
(3)点Q在棱上,设(),若二面角的余弦值为,求.
22.(本小题满分12分)
已知椭圆C:()过点,A为左顶点,且直线的斜率为.
(1)求椭圆C的标准方程;
(2)设在椭圆内部,在椭圆外部,过M作斜率不为0的直线交椭圆C于P,Q两点,若,求证:为定值,并求出这个定值.
五市十校教研教改共同体 三湘名校教育联盟 湖湘名校教育联合体
2022年下学期高二期中考试
数学
参考答案、提示及评分细则
一、选择题:(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.【答案】C
【解析】∵,∴.
2.【答案】B
【解析】圆心,半径,
故圆C方程为.
3.【答案】C
【解析】取一截面建系如图,设抛物线方程为(),记最大高度为h,如图:,在抛物线上,故,
两式相除有,解得.
4.【答案】AB
【解析】若公比有,,,此时,故公比,由题意,化简有,故有或,选答案AB.
5.【答案】B
【解析】由双曲线几何性质知,双曲线的焦点在实轴上,实轴与双曲线的交点,是双曲线的顶点,故双曲线C的实轴长,选答案B.
6.【答案】D
【解析】由知A,B错误.由,所以C错误.当时,,所以D正确.
7.【答案】D
【解析】A点运动轨迹最终构成图象如图:
由图可知.故,
在B→D段时,A点的轨迹方程为(),∴.
8.【答案】C
【解析】由题意,取中点,中点,连接,则,分别是与的外心,且,分别过,作面,面,记,则O为外接球球心,在中,,∴,故,选C.
二、多选题(本题共4小题,每小题5分,在每小题给出的选项中,有多项符合要求,全部选对的得5分,有选错的得0分,部分选对的得2分)
9.【答案】BC
【解析】对A:否定为:,,所以A错误;
对D,当时,两直线重合,所以D错误.
10.【答案】AB
【解析】由题意得,,∴,故A正确;
由,故B正确;
由,知故C错误;
由有,
当且仅当时取到等号,但,故不能取“=”,所以D错.
11.【答案】ABC
【解析】,由知方程为,联立,
消去x有,记,,
则,由,∴,故A正确;
对选项BCD,可设:,代入有,
则,由,
故直线为,过定点,即,故B正确;
由,得D在以为直径的圆:上运动(原点除外),故C正确;
当时,面积最大,此时,有,故D错误.
12.【答案】ACD
【解析】易知A,D正确;
对选项B:展开与到同一平面上如图.
知,故B错误;
对选项C:M与重合时,在侧面上的射影为,故交线是以为圆心的一段圆弧(个圆),且圆半径,故圆弧长,所以C正确.
三、填空题(本题共4小题,每小题5分,共20分)
13.【答案】84
【解析】由分层抽样易得.
14.【答案】
【解析】不妨设P在第一象限,则,
依题意:,
∴离线率.
15.【答案】18
【解析】易得M在椭圆上运动,且B在椭圆上,A为左顶点,由方程:,
设直线l:与椭圆相切于点M.
联立,消去x得,
由,依题意,时,面积最大,
此时直线l与距离为,又,
∴.
16.【答案】(1)11(2分) (2)(3分)
【解析】(1),∴;
(2).
四、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.【答案】(1) (2)
【解析】(1)由题意,································································1分
∴,···············································································2分
又,···············································································3分
∴,···············································································4分
故双曲线C的方程为;··································································5分
(2),,
则由双曲线定义可得 ①,
由三角形余弦定理得 ②,······························································7分
有,···············································································9分
∴的面积.··········································································10分
18.【答案】(1)0.28 (2)0.432
【解析】设“第i局甲胜”为事件,“第j局乙胜”为事件(i,,2,3,4,5),
(1)记“三局结束比赛”,则,·························································2分
∴
;·················································································6分
(2)记“决胜局进入第五局比赛”,则,··················································8分
∴
.·················································································12分
19.【答案】(1) (2)
【解析】(1)由,···································································2分
由正弦定理得,······································································4分
又,∴,···········································································6分
(2)解法一:在锐角中,由(1)知,,有,令,则,,
由正弦定理得,的面积 ································································8分
,················································································10分
由得,,则,
于是得,
所以面积的取值范围是.································································12分
解法二:由(1)可知,,故,
又因为,
所以,·············································································8分
又因为,,
所以,
故,
即有,则,·········································································10分
又由,
即,
所以面积的取值范围是.································································12分
20【答案】(1) (2)
【解析】(1)由,···································································1分
∴(常数),········································································2分
故数列是以为公差的等差数列,
且首项为,··········································································3分
∴,···············································································4分
故;···············································································5分
(2)设公比为q(),由题意:,
∴,
解得或(舍),
∴,
∴,···············································································7分
∴,
有,
两式相减得
,·················································································9分
∴,··············································································10分
由,知在上单调递增,································································11分
∴.···············································································12分
21.【答案】(1)略 (2)略 (3)
【解析】(1)证明:取中点F,连接,,
则,又,
∴,
∴四边形是平行四边形,
∴,
又面,面,
∴面;·············································································4分
(2)证明:由题意:,,
∴,同理,
又,∴,
∴,···············································································6分
又面面,
∴面,
∴.又且,
∴面;·············································································8分
(3)以D为原点,建立如图所示的空间直角坐标系,
则,,,,
∴,,,
由,有,··········································································10分
令是面的法向量,
则,
令,有,··········································································11分
取面的法向量,
由.···············································································12分
22.【答案】(1) (2)为定值4,证明略
【解析】(1)由题意:,
∴,
故椭圆C的标准方程为;································································4分
(2)设:,
联立消去x,
有,
记,,
则且,,···········································································7分
若,则·············································································9分
(),
∴(定值),
综上:为定值4.····································································...12分
2022-2023学年湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二下学期7月期末联考数学试题含答案: 这是一份2022-2023学年湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二下学期7月期末联考数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
湖南省五市十校教研教改共同体&三湘名校教育联盟&湖湘名校教育联合体2022-2023学年高二下学期7月期末数学试题: 这是一份湖南省五市十校教研教改共同体&三湘名校教育联盟&湖湘名校教育联合体2022-2023学年高二下学期7月期末数学试题,文件包含三湘名校教育联盟2023年上学期高二期末数学考试pdf、三湘名校教育联盟2023年上学期高二期末考试数学答案1pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
2022-2023学年湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试数学试题 Word版: 这是一份2022-2023学年湖南省五市十校教研教改共同体、三湘名校教育联盟、湖湘名校教育联合体高二上学期期中考试数学试题 Word版,共14页。试卷主要包含了已知函数,下列说法正确的是,下列说法正确的是等内容,欢迎下载使用。