浙教版数学八上动点几何问题试题(无答案)
展开八上数学动点几何问题
※动点求最值:
两定一动型(“两个定点,一个动点”的条件下求最值。例如直线l的同侧有两个定点A、B,在直线l上有一动点)
例1、以正方形为载体 如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是
例2、以直角梯形为载体 如图,在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为
一定两动型(“一个定点”+“两个动点”)
例3、以三角形为载体 如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是
例4、以正方形为载体 正方形ABCD的边长为2,E为AB的中点,P是AC上的一动点.连接BP,EP,则PB+PE的最小值是
例5、以角为载体 如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是 .
例6、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
※利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
例7、如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若Q的运动速度与点P的运动速度不相等,当Q的运动速度为多少时,使△BPD与△CQP全等?
(2)若Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
例8、如图,CA⊥AB,垂足为点A,AB=8cm,AC=4cm,射线BM⊥AB,垂足为点B,一动点E从A点出发,以2cm/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动时间为多少时,点B、D、E组成的三角形与点A、B、C组成的三角形全等.
例9、如图,△ABC中,∠ACB=90°,AC=6,BC=8,点P从A点出沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F,问:点P运动多少时间时,△PEC与QFC全等?请说明理由。
例10、已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CD为AB边上的高.动点P从点A出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为ts.
(1)求CD的长;
(2)t为何值时,△ACP为等腰三角形?
(3)若M为BC上一动点,N为AB上一动点,是否存在M,N使得AM+MN的值最小,如果有请尺规作出图形(不必求最小值),如果没有请说明理由.
例11、如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
中考数学二轮复习专题41几何问题之动点问题含解析答案: 这是一份中考数学二轮复习专题41几何问题之动点问题含解析答案,共67页。试卷主要包含了已知等内容,欢迎下载使用。
中考数学二轮复习专题41几何问题之动点问题含解析答案: 这是一份中考数学二轮复习专题41几何问题之动点问题含解析答案,共67页。试卷主要包含了已知等内容,欢迎下载使用。
中考数学几何专项练习:动点路径线段最值问题: 这是一份中考数学几何专项练习:动点路径线段最值问题,文件包含中考数学几何专项练习动点路径线段最值问题原卷docx、中考数学几何专项练习动点路径线段最值问题解析版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。