2020-2021学年6.3空间向量的应用课前预习课件ppt
展开课后素养落实(九) 空间向量与垂直关系
(建议用时:40分钟)
一、选择题
1.u=(2,-2,2)是平面α的一个法向量,v=(1,2,1)是平面β的一个法向量,则下列命题正确的是( )
A.α,β平行 B.α,β垂直
C.α,β重合 D.α,β不垂直
B [u·v=(2,-2,2)·(1,2,1)=2×1-2×2+2×1=0,∴u⊥v,∴平面α⊥平面β.]
2.已知空间向量a=(2,2,-3),b=(0,6,m),若a⊥b,则m=( )
A. B.1 C.2 D.4
D [a·b=12-3m=0,解得m=4.]
3.在四棱锥PABCD中,底面ABCD是平行四边形,=(2,-1,-4),=(4,2,0),=(-1,2,-1),则PA与底面ABCD的关系是( )
A.相交 B.垂直
C.不垂直 D.成60°角
B [因为·=2×(-1)+(-1)×2+(-4)×(-1)=0,所以⊥;因为·=4×(-1)+2×2+0×(-1)=0,所以⊥,又AB∩AD=A,所以AP⊥平面ABCD.]
4.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且=2,设C,若CD⊥AB,则λ的值为( )
A. B.- C. D.
B [设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),
∵=2,∴∴
∴D,=,
∵⊥,∴·=2+λ-3(-1-λ)=0,∴λ=-.]
5.如图所示,在正方体ABCDA1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则( )
A.EF至多与A1D,AC之一垂直
B.EF⊥A1D,EF⊥AC
C.EF与BD1相交
D.EF与BD1异面
B [建立以DA,DC,DD1所在直线分别为x,y,z轴的空间直角坐标系(图略),不妨设正方体的棱长为1,则=(1,0,1),
=(0,1,0)-(1,0,0)=(-1,1,0),
E,F,
=,∴·=0,·=0,
∴EF⊥A1D,EF⊥AC.]
二、填空题
6.已知三点A(1,1,0),B(1,0,1),C(0,1,1),则平面ABC的单位法向量为________.
或 [三点A(1,1,0),B(1,0,1),C(0,1,1),则=(0,-1,1),=(-1,0,1).
令平面ABC的法向量为n=(x,y,z),可得,
即,∴x=y=z,∵平面ABC的法向量n=(x,y,z)为单位法向量,
∴x2+y2+z2=1,解得x=y=z=±,
故平面ABC的单位法向量是或.]
7.设平面α与向量a=(-1,2,-4)垂直,平面β与向量b=(2,3,1)垂直,则平面α与β的位置关系是________.
垂直 [由题意,a·b=(-1,2,-4)·(2,3,1)=-2+6-4=0,∴a⊥b,
∵根据平面α与向量a=(-1,2,-4)垂直,平面β与向量b=(2,3,1)垂直,∴α⊥β.故答案为垂直.]
8.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则=________.
[∵⊥,∴·=0,∴3+5-2z=0,∴z=4.
∵=(x-1,y,-3),且BP⊥平面ABC,
∴即
解得故=.]
三、解答题
9.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.
[证明] 以C为坐标原点,建立如图所示的空间直角坐标系,则A(,,0),B(0,,0),D(,0,0),F(,,1),M.
所以=,=(0,,1),=(,-,0).
设n=(x,y,z)是平面BDF的法向量,
则n⊥,n⊥,
所以⇒
取y=1,得x=1,z=-.则n=(1,1,-).
因为=.
所以n=-,得n与共线.
所以AM⊥平面BDF.
10.如图,在正四棱柱ABCDA1B1C1D1中,底面边长为2,侧棱长为4,E,F分别是棱AB,BC的中点.求证:平面B1EF⊥平面BDD1B1.
[证明] 以D为坐标原点,DA,DC,DD1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系如图,
由题意,知D(0,0,0),A(2,0,0),C(0,2,0),B1(2,2,4),E(2,,0),F(,2,0),
则=(0,-,-4),
=(-,,0).
设平面B1EF的法向量为n=(x,y,z).
则n·=-y-4z=0,n·=-x+y=0,
得x=y,z=-y,令y=1,得n=.
易知平面BDD1B1的一个法向量为=(-2,2,0),
而n·=1×(-2)+1×2+×0=0,
即n⊥,∴平面B1EF⊥平面BDD1B1.
11.(多选题)已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于下列结论正确的有( )
A.AP⊥AB
B.AP⊥AD
C.是平面ABCD的法向量
D.∥
ABC [由于·=-1×2+(-1)×2+(-4)×(-1)=0,·=4×(-1)+2×2+0×(-1)=0,所以A、B、C正确,又=-=(2,3,4).
∵=(-1,2,-1),不满足=λ,
∴D不正确,故选ABC.]
12.(多选题)在如图所示的空间直角坐标系中,ABCDA1B1C1D1是棱长为1的正方体,给出下列结论中,正确的是( )
A.平面ABB1A1的一个法向量为(0,1,0)
B.平面B1CD的一个法向量为(1,1,1)
C.平面B1CD1的一个法向量为(1,1,1)
D.平面ABC1D1的一个法向量为(0,1,1)
AC [∵=(0,1,0),AB⊥AD,AA1⊥AD,又AB∩AA1=A,∴AD⊥平面ABB1A1,∴A正确;∵=(-1,0,0),而(1,1,1)·=-1≠0,∴(1,1,1)不是平面B1CD的法向量,∴B不正确;C中易证AC1⊥面B1CD1且=(1,1,1),∴C正确,D中,因=(1,0,0),∴·(0,1,1)=0,又=(0,1,1),且(0,1,1)·(0,1,1)≠0,∴D不正确.]
13.已知空间三点A(-1,1,1),B(0,0,1),C(1,2,-3),若直线AB上存在一点M,满足CM⊥AB,则点M的坐标为________,若n=(x,y,z)为平面ABC的法向量,则x∶y∶z=________.
4∶4∶3 [设M(x,y,z),∵=(1,-1,0),=(x,y,z-1),=(x-1,y-2,z+3),由题意,得,
∴x=-,y=,z=1,
∴点M的坐标为,
又=(2,1,-4).
n·=x-y=0且n·=2x+y-4z=0,
令x=1,则y=1,z=,∴x∶y∶z=1∶1∶=4∶4∶3.]
14.如图所示,在直三棱柱ABCA1B1C1中,底面是以∠ABC为直角的等腰三角形,AC=2a,BB1=3a,D是A1C1的中点,点E在棱AA1上,要使CE⊥平面B1DE,则AE=________.
a或2a [建立如图所示的空间直角坐标系,
则B1(0,0,3a),C(0,a,0),
D.
设E(a,0,z)(0≤z≤3a),
则=(a,-a,z),
=(a,0,z-3a),
=.
又·=a2-a2+0=0,
·=2a2+z2-3az=0,
解得z=a或2a.故AE=a或2a.]
15.如图,在棱长为1的正方体ABCDA1B1C1D1中,点E为BC的中点.
(1)在B1B上是否存在一点P,使D1P⊥平面B1AE?
(2)在平面AA1B1B上是否存在一点N,使D1N⊥平面B1AE?
[解] (1)如图,以D为坐标原点,分别以DA,DC,DD1所在直线为x轴、y轴、z轴建立空间直角坐标系,则点A,E,B1(1,1,1),D1(0,0,1),=(0,-1,-1),=.假设存在点P(1,1,z)满足题意,于是=(1,1,z-1),
所以所以
解得矛盾.故在B1B上不存在点P使D1P⊥平面B1AE.
(2)假设在平面AA1B1B上存在点N,使D1N⊥平面B1AE.
设N(1,y,z),则
因为=(1,y,z-1),所以
解得
故平面AA1B1B上存在点N,使D1N⊥平面B1AE.
高中13.2 基本图形位置关系教学演示课件ppt: 这是一份高中13.2 基本图形位置关系教学演示课件ppt,文件包含苏教版高中数学必修第二册第13章1321323第2课时直线与平面垂直课件ppt、苏教版高中数学必修第二册第13章1321323第2课时直线与平面垂直学案doc、苏教版高中数学必修第二册课后素养落实31直线与平面垂直含答案doc等3份课件配套教学资源,其中PPT共57页, 欢迎下载使用。
苏教版 (2019)选择性必修第二册6.3空间向量的应用教案配套课件ppt: 这是一份苏教版 (2019)选择性必修第二册6.3空间向量的应用教案配套课件ppt,文件包含苏教版高中数学选择性必修第二册第6章632第1课时空间向量与平行关系课件ppt、苏教版高中数学选择性必修第二册第6章632第1课时空间向量与平行关系学案doc、苏教版高中数学选择性必修第二册课后素养落实8空间向量与平行关系含答案doc等3份课件配套教学资源,其中PPT共52页, 欢迎下载使用。
数学选择性必修第二册6.2空间向量的坐标表示教学演示ppt课件: 这是一份数学选择性必修第二册6.2空间向量的坐标表示教学演示ppt课件,文件包含苏教版高中数学选择性必修第二册第6章622第2课时空间向量数量积的坐标表示课件ppt、苏教版高中数学选择性必修第二册第6章622第2课时空间向量数量积的坐标表示学案doc、苏教版高中数学选择性必修第二册课后素养落实6空间向量数量积的坐标表示含答案doc等3份课件配套教学资源,其中PPT共57页, 欢迎下载使用。