终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题6 二次根式 2023年中考数学一轮复习专题训练(北京专用)

    立即下载
    加入资料篮
    专题6 二次根式 2023年中考数学一轮复习专题训练(北京专用)第1页
    专题6 二次根式 2023年中考数学一轮复习专题训练(北京专用)第2页
    专题6 二次根式 2023年中考数学一轮复习专题训练(北京专用)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题6 二次根式 2023年中考数学一轮复习专题训练(北京专用)

    展开

    这是一份专题6 二次根式 2023年中考数学一轮复习专题训练(北京专用),共8页。试卷主要包含了单选题,填空题,计算题等内容,欢迎下载使用。
    专题6 二次根式 2023年中考数学一轮复习专题训练(北京专用)一、单选题1.(2022·昌平期中)简二次根式简二次根式是同类二次根式,则x的值为(  )Ax0 Bx1 Cx2 Dx32.(2022·昌平期中)二次根式中字母x的取值范围是(  )Ax≥1 Bx≤1 Cx1 Dx13.(2022·门头沟期末)在函数中,自变量的取值范围是(  )A B C D4.(2022·西城期末)下列计算,正确的是(  )A BC D5.(2022·西城期末)下列各式中是简二次根式的是(  )A B C D6.(2022·大兴期末)下列二次根式中,是简二次根式的是(  ).A B C D7.(2022·海淀期末)下列二次根式中,简二次根式是(  )A B C D8.(2022·海淀期中)下列等式,正确的是(  )A B C D9.(2022·北京市期中)下列根式中,化简后可以与合并的是(  )A B C D10.(2022·北京市期中)下列运算正确的是(  )A B C D二、填空题11.(2022·昌平期中),请写出一个符合条件的                  12.(2022·北京市)在实数范围内有意义,则实数x的取值范围是       13.(2022·房山模拟)若代数式有意义,则实数x的取值范围是       14.(2022·海淀期中)在实数范围内有意义,则x的取值范围为       15.(2022·北京市期中)计算:              16.(2022·大兴期中)若二次根式在实数范围内有意义,则x的取值范围是       17.(2022·海淀模拟)已知,且m是整数,请写出一个符合要求的m的值                   18.(2022·朝阳模拟)二次根式中字母的取值范围是       19.(2021·门头沟期末)如果二次根式有意义,那么x的取值范围是       20.(2021·石景山期末)要使代数式有意义,则实数的取值范围是       三、计算题21.(2022·昌平期中)计算:22.(2022·昌平期中)计算:23.(2022·东城期末)计算:1  2  24.(2022·西城期末)计算:1225.(2022·海淀期末)已知,求代数式的值.
    答案解析部分1【答案】D【解析】【解答】解:简二次根式简二次根式是同类二次根式,x+32x解得:x3故答案为:D
    【分析】根据简二次根式和同类二次根式的定义可得x+32x,再求出x的值即可。2【答案】A【解析】【解答】解:有意义,x-1≥0解得故答案为:A
    【分析】根据二次根式有意义的条件列出不等式x-1≥0,再求出x的取值范围即可。3【答案】B【解析】【解答】解:根据二次根式的意义可得, 解得故答案为:B
    【分析】根据二次根式有意义的条件列出不等式求解即可。4【答案】D【解析】【解答】解:A,原式计算不符合题意;B,原式计算不符合题意;C,原式计算不符合题意;D,符合题意,故答案为:D
    【分析】利用二次根式的性质、二次根式的加减法逐项判断即可。5【答案】D【解析】【解答】因为,所以A不符合题意;因为,所以B不符合题意;因为,所以C不符合题意;因为不能化简,是简二次根式,所以D符合题意.故答案为:D
    【分析】根据简二次根式的定义逐项判断即可。6【答案】D【解析】【解答】解:A,故A不符合题意;B,故B不符合题意;C,故C不符合题意;D简二次根式,故D符合题意;故答案为:D【分析】利用简二次根式的定义对每个选项一一判断即可。7【答案】B【解析】【解答】解:A,故不符合题意;B简二次根式,故符合题意;C,故不符合题意;D,故不符合题意;故答案为:B【分析】根据简二次根式的定义对每个选项一一判断即可。8【答案】A【解析】【解答】解:A,符合题意;B无意义,不符合题意;C,不符合题意;D,不符合题意;故答案为:A【分析】根据二次根式的性质和二次根式的加法运算法则逐项判断即可。9【答案】B【解析】【解答】解:A=2,不可以与合并,故A不符合题意;B,可以与合并,故B符合题意;C,不可以与合并,故C不符合题意;D,不可以与合并,故D不符合题意;故答案为:B【分析】利用二次根式的性质化简,再根据同类二次根式的定义逐项判断即可。10【答案】D【解析】【解答】解:A不是同类二次根式,不能合并,A不符合题意;B不是同类二次根式,不能合并,B不符合题意;CC不符合题意;D,计算符合题意,D符合题意,故答案为:D【分析】利用二次根式的加减法和乘除法逐项判断即可。11【答案】1(答案唯一)【解析】【解答】=1x≠0),=|x|=xx0即可,符合条件,故答案为1(答案唯一).
    【分析】根据=1,再结合二次根式的性质可得=|x|=x,再求解即可。12【答案】x≥8【解析】【解答】解:由题意得:x-8≥0解得:x≥8故答案为:x≥8【分析】根据二次根式有意义的条件求出x-8≥0,再求解即可。13【答案】x≥-2【解析】【解答】代数式有意义故答案为:x≥-2【分析】根据二次根式有意义的条件列出不等式求解即可。14【答案】x≥-3【解析】【解答】解:依题意有x+3≥0解得:x≥-3故答案为:x≥-3【分析】利用二次根式有意义的条件列出不等式x+3≥0,求解即可。15【答案】58【解析】【解答】解:故答案为:58.【分析】利用二次根式的性质逐项判断即可。16【答案】x≥4【解析】【解答】解:依题意有x4≥0解得x≥4故答案为:x≥4【分析】二次根式有意义的条件:被开方数为非负数,据此解答即可.17【答案】23,答案唯一【解析】【解答】解:m可以是2,或3故答案是2,或3.答案唯一.
    【分析】根据算数平方根的定义和判断m可取2或者3,写出一个即可18【答案】x≤4【解析】【解答】解:由题意得:解得:x≤4故答案为:x≤4
    【分析】根据二次根式有意义的条件可得,解之即可。19【答案】x≥5【解析】【解答】解:由题意得x-5≥0解得x≥5故答案为:x≥5【分析】根据二次根式有意义的条件先求出x-5≥0,再求解即可。20【答案】x≥3【解析】【解答】根据二次根式有意义的条件可得x-3≥0,解得x≥3.
    【分析】根据 有意义, 求出x-3≥0,再计算即可。21【答案】解:原式=【解析】【分析】先利用二次根式和立方根的性质化简,再计算即可。22【答案】解:同号,且 时,原式;当 时,原式【解析】【分析】利用二次根式的性质及二次根式的乘除法的计算方法求解即可。23【答案】1)解:2)解:【解析】【分析】(1)利用二次根式的性质,立方根计算求解即可;
    2)利用二次根式的加减乘除法则,绝对值计算求解即可。24【答案】1)解:2)解:【解析】【分析】(1)利用二次根式的乘除运算的计算方法求解即可;
    2)利用二次根式的混合运算的计算方法求解即可。25【答案】解:=x2+2x+1-4=x+12-4=-1+12-4=2-4=-2【解析】【分析】将 代入代数式计算求解即可

    相关试卷

    专题19 圆 中考数学一轮复习专题训练(北京专用):

    这是一份专题19 圆 中考数学一轮复习专题训练(北京专用),共38页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。

    专题6 二次根式 中考数学一轮复习专题训练(北京专用):

    这是一份专题6 二次根式 中考数学一轮复习专题训练(北京专用),共9页。试卷主要包含了单选题,填空题,计算题等内容,欢迎下载使用。

    专题5 分式 中考数学一轮复习专题训练(北京专用):

    这是一份专题5 分式 中考数学一轮复习专题训练(北京专用),共11页。试卷主要包含了单选题,填空题,计算题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map