第15讲 圆 2023年中考数学一轮复习专题训练(江苏专用)
展开
这是一份第15讲 圆 2023年中考数学一轮复习专题训练(江苏专用),共31页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。
第15讲 圆 2023年中考数学一轮复习专题训练(江苏专用)
一、单选题
1.(2022·无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是( )
A.AE⊥DE B.AE//OD C.DE=OD D.∠BOD=50°
2.(2022·无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为( )
A.12π B.15π C.20π D.24π
3.(2022·苏州)如图,在 5×6 的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是( )
A.π12 B.π24 C.10π60 D.5π60
4.(2022·连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )
A.23π-32 B.23π-3 C.43π-23 D.43π-3
5.(2022·泗洪模拟)若一个圆锥的侧面展开图是半径为9cm、圆心角为240°的扇形,则这个圆锥的底面半径长是( )
A.6cm B.9cm C.12cm D.18cm
6.(2022·泗洪模拟)已知△ABC的内心为P,则下列说法错误的是( )
A.PA=PB=PC
B.P在△ABC的内部
C.P为△ABC三个内角平分线的交点
D.P到三边距离相等
7.(2022·惠山模拟)下列命题中,是真命题的是 ( )
A.长度相等的弧是等弧 B.如果|a|=1,那么a=1
C.两直线平行,同位角相等 D.如果x>y ,那么-2x>-2y
8.(2022·惠山模拟)如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为( )
A.1 B.22﹣1 C.2 D.322﹣1
9.(2022·锡山模拟)若圆锥的底面半径为3cm,母线长为4cm,则这个圆锥的侧面积为( )
A.2cm2 B.24cm2 C.12πcm2 D.24πcm2
10.(2022·江苏模拟)如图,点A的坐标是(−2,0),点C是以OA为直径的⊙B上的一动点,点A关于点C的对称点为点P.当点C在⊙B上运动时,所有这样的点P组成的图形与直线y=kx-3k(k>0)有且只有一个公共点,则k的值为( ).
A.23 B.53 C.255 D.655
11.(2021·常州模拟)如图,△ABC内接于⊙O,弦AB=6,sinC=35,则⊙O的半径为( )
A.5 B.10 C.154 D.95
二、填空题
12.(2022·徐州)如图,A、B、C点在圆O上, 若∠ACB=36°, 则∠AOB= .
13.(2022·盐城)如图,在矩形ABCD中,AB=2BC=2,将线段AB绕点A按逆时针方向旋转,使得点B落在边CD上的点B'处,线段AB扫过的面积为 .
14.(2022·盐城)如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C= °.
15.(2022·常州)如图,△ABC是⊙O的内接三角形.若∠ABC=45°,AC=2,则⊙O的半径是 .
16.(2022·泰州)如图,PA与⊙O相切于点A,PO与⊙O相交于点B,点C在AmB 上,且与点A,B 不重合,若∠P=26°,则∠C的度数为 °.
17.(2022·苏州)如图,AB是 ⊙O 的直径,弦CD交AB于点E,连接AC,AD.若 ∠BAC=28° ,则 ∠D= °
18.(2022·连云港)如图, AB 是 ⊙O 的直径, AC 是 ⊙O 的切线, A 为切点,连接 BC ,与 ⊙O 交于点 D ,连接 OD .若 ∠AOD=82° ,则 ∠C= ° .
19.(2022九下·沭阳模拟)如图,在平面直角坐标系中,点A(-1,0),点B(1,0),点M(3,4),以M为圆心,2为半径作⊙M.若点P是⊙M上一个动点,则PA2+PB2的最大值为
20.(2022·泗洪模拟)如图,大圆的弦AB切小圆于点C,且大圆的半径为5cm,小圆的半径为3cm,则弦AB的长为 cm.
三、综合题
21.(2022·徐州)如图,点A、B、C在圆O上,∠ABC=60°,直线AD∥BC,AB=AD,点O在BD上.
(1)判断直线AD与圆O的位置关系,并说明理由;
(2)若圆的半径为6,求图中阴影部分的面积.
22.(2022·镇江)操作探究题
(1)已知AC是半圆O的直径,∠AOB=(180n)°(n是正整数,且n不是3的倍数)是半圆O的一个圆心角.
操作:如图1,分别将半圆O的圆心角∠AOB=(180n)°(n取1、4、5、10)所对的弧三等分(要求:仅用圆规作图,不写作法,保留作图痕迹);
交流:当n=11时,可以仅用圆规将半圆O的圆心角∠AOB=(180n)°所对的弧三等分吗?
探究:你认为当n满足什么条件时,就可以仅用圆规将半圆O的圆心角∠AOB=(180n)°所对的弧三等分?说说你的理由.
(2)如图2,⊙o的圆周角∠PMQ=(2707)°.为了将这个圆的圆周14等分,请作出它的一条14等分弧CD(要求:仅用圆规作图,不写作法,保留作图痕迹).
23.(2022·南通)如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=22,点E在BC的延长线上,连接DE.
(1)求直径BD的长;
(2)若BE=52,计算图中阴影部分的面积.
24.(2022·无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.
(1)求证 △CED∽△BAD ;
(2)当 DC=2AD 时,求CE的长.
25.(2022·泗洪模拟)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.
(1)选择:下列四边形中,一定是圆美四边形的是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
(2)如图1,在等腰Rt△ABC中,∠BAC=90°,AB=1,经过点A,B的⊙O交AC边于点D,交BC于点E,连接DE,若四边形ABED为圆美四边形,求DE的长;
(3)如图2,AD是△ABC外接圆⊙O的直径,交BC于点E,点P在AD上,延长BP交⊙O于点F,已知PB2=PE⋅PA.问四边形ABFC是圆美四边形吗?为什么?
26.(2022·宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.
(1)【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:
解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.
在Rt△ABC中,tan∠BAC=12
在Rt△CDE中, ,
所以tan∠BAC=tan∠DCE.
所以∠BAC=∠DCE.
因为∠ACP+∠DCE =∠ACB =90°,
所以∠ACP +∠BAC =90°,
所以∠APC =90°,
即AB⊥CD.
(2)【拓展应用】如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在BM上找出一点P,使PM=AM,写出作法,并给出证明:
(3)【拓展应用】如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP·AB,写出作法,不用证明.
27.(2022·连云港)如图
【问题情境】
在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中 ∠ACB=∠DEB=90° , ∠B=30° , BE=AC=3 .
【问题探究】
小昕同学将三角板 DEB 绕点 B 按顺时针方向旋转.
(1)如图2,当点 E 落在边 AB 上时,延长 DE 交 BC 于点 F ,求 BF 的长.
(2)若点 C 、 E 、 D 在同一条直线上,求点 D 到直线 BC 的距离.
(3)连接 DC ,取 DC 的中点 G ,三角板 DEB 由初始位置(图1),旋转到点 C 、 B 、 D 首次在同一条直线上(如图3),求点 G 所经过的路径长.
(4)如图4, G 为 DC 的中点,则在旋转过程中,点 G 到直线 AB 的距离的最大值是 .
答案解析部分
1.【答案】C
【解析】【解答】解:∵DE是⊙O的切线,
∴OD⊥DE,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠OAD=∠EAD,
∴∠EAD=∠ODA,
∴OD∥AE,
∴AE⊥DE,故选项A、B都正确;
∵∠OAD=∠EAD=∠ODA=25°,
∴∠BOD=2∠OAD=50°,故选项D正确;
如图:
过点D作DF⊥AB于点F
∵AD平分∠BAC,AE⊥DE,DF⊥AB,
∴DE=DF
相关试卷
这是一份第16讲 圆 2023年中考数学一轮复习专题训练(浙江专用),共46页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。
这是一份第15讲 四边形 2023年中考数学一轮复习专题训练(浙江专用),共49页。试卷主要包含了单选题,填空题,综合题等内容,欢迎下载使用。
这是一份第16讲 对称、平移、旋转 2023年中考数学一轮复习专题训练(江苏专用),共36页。试卷主要包含了单选题,填空题,作图题,综合题等内容,欢迎下载使用。