数学九年级下册4 二次函数的应用课堂教学ppt课件
展开
这是一份数学九年级下册4 二次函数的应用课堂教学ppt课件,共23页。PPT课件主要包含了新课目标,新课进行时,情景导学,知识小结,随堂演练,课后作业,利润问题中的数量关系,探究交流,数量关系,如何定价利润最大等内容,欢迎下载使用。
1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点)2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点)
短片中,卖家使出浑身解数来赚钱. 商品买卖过程中,作为商家利润最大化是永恒的追求.如果你是商家,如何定价才能获得最大利润呢?
某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是 元,销售利润 元.
(1)销售额= 售价×销售量;
(2)利润= 销售额-总成本=单件利润×销售量;
(3)单件利润=售价-进价.
例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:
y=(20+x)(300-10x)
建立函数关系式:y=(20+x)(300-10x),
即:y=-10x2+100x+6000.
②自变量x的取值范围如何确定?
营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.
③涨价多少元时,利润最大,最大利润是多少?
y=-10x2+100x+6000,
即涨价5元时,最大利润是6250元.
降价销售①每件降价x元,则每星期售出商品的利润y元,填空:
y=(20-x)(300+18x)
建立函数关系式:y=(20-x)(300+18x),
即:y=-18x2+60x+6000.
例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?
综合可知,应定价58元时,才能使利润最大。
②自变量x的取值范围如何确定?
营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.
③降价多少元时,利润最大,是多少?
即降价 元时,最大利润是6050元.
即:y=-18x2+60x+6000,
由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?
求解最大利润问题的一般步骤
(1)建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”
(2)结合实际意义,确定自变量的取值范围;
(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.
y=(160+10x)(120-6x)
例2 某旅馆有客房120间,每间房的日租金为160元,每天都客满.经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?最高总收入是多少?
解:设每间客房的日租金提高10x元,则每天客房出租数会减少6x间,设客房日租金为y万元,则
当x=2时,y有最大值,且y最大=19440.
答:每间客房的日租金提高到180元时,客房日租金的总收入最高,最大收入为19440.
=-60(x-2)2+19440.
∵x≥0,且120-6x>0,
这时每间客房的日租金为160+10×2=180(元).
总利润=单件利润×销售量或总销量=总售价-总成本.
涨价:要保证销售量≥0;降价:要保证单件利润≥0.
利用配方法或公式求最大值或利用函数简图和性质求出.
1.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x元(20 ≤x ≤30)出售,可卖出(600-20x)件,为使利润最大,则每件售价应定为 元.
2.进价为80元的某衬衣定价为100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y(件)与衬衣售价x(元)之间的函数关系式为 .每月利润w(元)与衬衣售价x(元)之间的函数关系式为 .(以上关系式只列式不化简).
y=2000-5(x-100)
w=[2000-5(x-100)](x-80)
3. 某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70,当x=150时,y=50,且y是x的一次函数,为了获得最大利润S(元),每件产品的销售价应定为( )
A.160元 B.180元 C.140元 D.200元
4.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是( )
A.1月,2月 B.1月,2月,3月C.3月,12月 D.1月,2月,3月,12月
5. 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?
解:(1)由题中条件可求y=-x2+20x-75
∵-1
相关课件
这是一份初中数学人教版九年级上册22.3 实际问题与二次函数课前预习课件ppt,共29页。PPT课件主要包含了导入新课,情境引入,讲授新课,探究交流,数量关系,典例精析,-10x,20−x,∴75≤x≤90,知识要点等内容,欢迎下载使用。
这是一份初中数学北师大版九年级下册4 二次函数的应用示范课课件ppt,共9页。
这是一份数学九年级下册4 二次函数的应用背景图课件ppt,共21页。