苏教版高中数学必修第一册第8章章末综合提升课件+学案+测评含答案
展开类型1 函数的零点与方程的根的关系及应用
根据函数零点的定义,函数y=f(x)的零点就是方程f(x)=0的根,判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有根,有几个根.从图形上说,函数的零点就是函数y=f(x)的图象与x轴的交点的横坐标,函数的零点、方程的根、函数的图象与x轴交点的横坐标三者之间有着内在的本质联系,利用它们之间的关系,可以解决很多函数、方程与不等式的问题.
从高考题型上看,这类题目,既有选择题,也可以出现解答题,解题时应注意通过数与形的相互结合,将三者进行相互转化.
【例1】 (1)函数f(x)=log3 [log2(4-2x)]的零点为________.
(2)函数g(x)=lg x与f(x)=x2-6x+9的图象的交点个数为________,设最右侧交点的横坐标x0,则存在n0∈N*,使x0∈(n0,n0+1),则n0=________.
[思路点拨] (1)可通过解方程来求零点.
(2)通过图象和零点存在定理来解.
(1)1 (2)2 3 [(1)f(x)=0时,log3[log2(4-2x)]=0,则log2(4-2x)=1,∴4-2x=2,∴2x=2,∴x=1.
(2)在同一个坐标系中做出f(x)和g(x)的图象,如图,易知交点个数有2个,设h(x)=g(x)-f(x),∵h(2)=lg 2-1<0,h(3)=lg 3>0,h(4)=lg 4-1<0,x0为最右侧交点,故x0∈(3,4),∴n0=3.
]
[跟进训练]
1.已知关于x的函数y=(m+6)x2+2(m-1)x+m+1恒有零点.
(1)求m的取值范围;
(2)若函数有两个不同零点,且其倒数之和为-4,求m的值.
[解] (1)当m+6=0,即m=-6时,函数为y=-14x-5,显然有零点.
当m+6≠0时,由Δ=4(m-1)2-4(m+6)(m+1)
=-36m-20≥0,得m≤-.
∴当m≤-且m≠-6时,二次函数有零点.
综上所述,m≤-.
(2)设x1,x2是函数的两个零点,则有
x1+x2=-,x1x2=.
∵+=-4,即=-4,
∴-=-4,解得m=-3.
且当m=-3时,m+6≠0,Δ>0符合题意,
∴m的值为-3.
类型2 函数的零点的应用
函数的零点的应用很广泛,特别是在求参数的取值范围,函数在指定区间上的零点、方程的根的分布等诸多方面,与零点有关的参数的取值范围问题综合性比较强,一般思路就是通过分离参数简化问题求解,即先分离参数,也可以转化为相关的函数图象的交点的个数问题,通过数形结合,求出参数的取值范围.该类问题属中档题,常与其他问题交汇命题.
【例2】 若函数f(x)=4x-2x-a,x∈[-1,1]有零点,求实数a的取值范围.
[解] 因为函数f(x)=4x-2x-a,x∈[-1,1]有零点,
所以方程4x-2x-a=0在[-1,1]上有解,即方程a=4x-2x在[-1,1]上有解.
方程a=4x-2x可变形为a=2-,
因为x∈[-1,1],所以2x∈,所以2-∈.
所以实数a的取值范围是.
[跟进训练]
2.已知函数f(x)=-x2-2x, g(x)=
(1)求g(f(1))的值;
(2)若方程g(f(x))-a=0有4个实数根,求实数a的取值范围.
[解] (1)g[f(1)]=g(-3)=-3+1=-2.
(2)令f(x)=t,则原方程化为g(t)=a,易知方程f(x)=t在t∈(-∞,1)上有2个不同的解,
则原方程有4个解等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g(t)(t<1)的图象,如图,由图象可知,当1≤a<时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是.
类型3 构建函数模型解决实际问题
数学建模是学生必备的学科素养之一,主要培养和提升建模能力和实际应用能力,将是以后高考的重要内容,利用建模解决实际问题的主要步骤为.
(1)建模:抽象出实际问题的数学模型.
(2)推理、演算:对数学模型进行逻辑推理或数学演算,得到问题在数学意义上的解.
(3)评价、解释:对求得的数学结果进行深入的讨论,作出评价、解释,返回到原来的实际问题中去,得到实际问题的解.
即:
(1)构建函数模型时不要忘记考虑函数的定义域.
(2)利用模型f(x)=ax+求解最值时,注意取得最值时等号成立的条件.
【例3】 小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=x2+x(万元).在年产量不小于8万件时,W(x)=6x+-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?
[解] (1)因为每件商品售价为5元,则x万件商品销售收入为5x万元,
依题意得,当0<x<8时,
L(x)=5x--3=-x2+4x-3;
当x≥8时,L(x)=5x--3=35-.
所以L(x)=
(2)当0<x<8时,L(x)=-(x-6)2+9.
此时,当x=6时,L(x)取得最大值L(6)=9万元.
当x≥8时,L(x)=35-≤35-2 =35-20=15,当且仅当x=时等号成立,
即x=10时,L(x)取得最大值15万元.
因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.
[跟进训练]
3.某公司对营销人员有如下规定:①年销售额x(单位:万元)在8万元以下,没有奖金;
②年销售额x(单位:万元),x∈[8,64]时,奖金为y万元,且y=logax,y∈[3,6],且年销售额越大,奖金越多;
③年销售额超过64万元,按年销售额的10%发奖金.
(1)求奖金y关于x的函数解析式;
(2)若某营销人员争取奖金y∈[4,10](单位:万元),则年销售额x(单位:万元)在什么范围内?
[解] (1)依题意,y=logax在x∈[8,64]上为增函数,所以
解得a=2,所以y=
(2)易知x≥8,当8≤x≤64时,要使y∈[4,10],则4≤log2x≤10,解得16≤x≤1 024,所以16≤x≤64;当x>64时,要使y∈[4,10],则40≤x≤100,所以64<x≤100.
综上所述,当年销售额x∈[16,100](单位:万元)时,奖金y∈[4,10](单位:万元).
(2020·北京高考)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.
给出下列四个结论:
①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;
②在t2时刻,甲企业的污水治理能力比乙企业强;
③在t3时刻,甲、乙两企业的污水排放都已达标;
④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.
其中所有正确结论的序号是________.
①②③ [由题图可知甲企业的污水排放量在t1时刻高于乙企业,而在t2时刻甲、乙两企业的污水排放量相同,故在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强,故①正确;由题图知在t2时刻,甲企业对应的关系图象斜率的绝对值大于乙企业的,故②正确;在t3时刻,甲、乙两企业的污水排放量都低于污水达标排放量,故都已达标,③正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力明显低于[t1,t2]时的,故④错误.]