高中数学复习专题:简单的三角恒等变换
展开
这是一份高中数学复习专题:简单的三角恒等变换,共15页。试卷主要包含了二倍角公式,辅助角公式,化简等内容,欢迎下载使用。
§4.5 简单的三角恒等变换
最新考纲
考情考向分析
1.会用向量的数量积推导出两角差的余弦公式.
2.会用两角差的余弦公式推导出两角差的正弦、正切公式.
3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
三角恒等变换是三角变换的工具,主要考查利用两角和与差的三角函数公式、二倍角公式进行三角函数的化简与求值,重在考查化简、求值,公式的正用、逆用以及变式运用,可单独考查,也可与三角函数的图象和性质、向量等知识综合考查,加强转化与化归思想的应用意识.选择、填空、解答题均有可能出现,中低档难度.
1.两角和与差的余弦、正弦、正切公式
cos(α-β)=cos αcos β+sin αsin β(C(α-β))
cos(α+β)=cos αcos β-sin αsin β(C(α+β))
sin(α-β)=sin αcos β-cos αsin β(S(α-β))
sin(α+β)=sin αcos β+cos αsin β(S(α+β))
tan(α-β)=(T(α-β))
tan(α+β)=(T(α+β))
2.二倍角公式
sin 2α=2sin αcos α;
cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
tan 2α=.
知识拓展
1.降幂公式:cos2α=,sin2α=.
2.升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.
3.辅助角公式:asin x+bcos x=sin(x+φ),其中sin φ=,cos φ= .
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )
(2)对任意角α都有1+sin α=2.( √ )
(3)y=3sin x+4cos x的最大值是7.( × )
(4)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )
题组二 教材改编
2.[P127T2]若cos α=-,α是第三象限的角,则sin等于( )
A.- B. C.- D.
答案 C
解析 ∵α是第三象限角,
∴sin α=-=-,
∴sin=-×+×=-.
3.[P131T5]sin 347°cos 148°+sin 77°cos 58°= .
答案
解析 sin 347°cos 148°+sin 77°cos 58°
=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°
=(-cos 77°)·(-sin 58°)+sin 77°cos 58°
=sin 58°cos 77°+cos 58°sin 77°
=sin(58°+77°)=sin 135°=.
4.[P146T4]tan 20°+tan 40°+tan 20°tan 40°= .
答案
解析 ∵tan 60°=tan(20°+40°)=,
∴tan 20°+tan 40°=tan 60°(1-tan 20°tan 40°)
=-tan 20°tan 40°,
∴原式=-tan 20°tan 40°+tan 20°tan 40°=.
题组三 易错自纠
5.化简:= .
答案
解析 原式=
===.
6.(2018·昆明模拟)若tan α=,tan(α+β)=,则tan β= .
答案
解析 tan β=tan[(α+β)-α]===.
7.(2018·烟台模拟)已知θ∈,且sin=,则tan 2θ= .
答案 -
解析 方法一 sin=,得sin θ-cos θ=,①
θ∈,①平方得2sin θcos θ=,
可求得sin θ+cos θ=,∴sin θ=,cos θ=,
∴tan θ=,tan 2θ==-.
方法二 ∵θ∈且sin=,
∴cos=,
∴tan==,∴tan θ=.
故tan 2θ==-.
第1课时 两角和与差的正弦、余弦和正切公式
题型一 和差公式的直接应用
1.(2018·青岛调研)已知sin α=,α∈,tan(π-β)=,则tan(α-β)的值为( )
A.- B. C. D.-
答案 A
解析 ∵α∈,∴tan α=-,又tan β=-,
∴tan(α-β)=
==-.
2.(2017·山西太原五中模拟)已知角α为锐角,若sin=,则cos等于( )
A. B.
C. D.
答案 A
解析 由于角α为锐角,且sin=,
则cos=,
则cos=cos=coscos +sinsin =×+×=,
故选A.
3.计算的值为 .
答案
解析 =
===.
思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.
(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.
题型二 和差公式的灵活应用
命题点1 角的变换
典例 (1)设α,β都是锐角,且cos α=,sin(α+β)=,则cos β= .
答案
解析 依题意得sin α==,
因为sin(α+β)=α,
所以α+β∈,所以cos(α+β)=-.
于是cos β=cos[(α+β)-α]
=cos(α+β)cos α+sin(α+β)sin α
=-×+×=.
(2)(2017·泰安模拟)已知cos(75°+α)=,则cos(30°-2α)的值为 .
答案
解析 cos(75°+α)=sin(15°-α)=,
∴cos(30°-2α)=1-2sin2(15°-α)=1-=.
命题点2 三角函数式的变换
典例 (1)化简: (0b D.a>c>b
答案 D
解析 a=sin 40°cos 127°+cos 40°sin 127°
=sin(40°+127°)=sin 167°=sin 13°,
b=(sin 56°-cos 56°)=sin 56°-cos 56°
=sin(56°-45°)=sin 11°,
c==cos239°-sin239°=cos 78°=sin 12°,
∵sin 13°>sin 12°>sin 11°,∴a>c>b.
5.已知sin α=且α为第二象限角,则tan等于( )
A.- B.- C.- D.-
答案 D
解析 由题意得cos α=-,则sin 2α=-,
cos 2α=2cos2α-1=.
∴tan 2α=-,
∴tan==
=-.
6.已知sin 2α=,则cos2等于( )
A. B.
C. D.
答案 A
解析 因为cos2=
==,
所以cos2===,故选A.
7.(2018·新疆乌鲁木齐一诊)的值是( )
A. B.
C. D.
答案 C
解析 原式=
=
==.
8.已知锐角α,β满足sin α-cos α=,tan α+tan β+tan αtan β=,则α,β的大小关系是( )
A.α
相关试卷
这是一份高中数学高考课后限时集训24 简单的三角恒等变换 作业,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学高考第4章 §4 4 简单的三角恒等变换,共22页。试卷主要包含了二倍角的正弦、余弦、正切公式,常用的部分三角公式,下列各式中,值为eq \f的是,求值等内容,欢迎下载使用。
这是一份精品高中数学一轮专题-简单的三角恒等变换一,共2页。试卷主要包含了已知,,则,若,则化简的结果是,设是第二象限角,,且,则,若,则__________,化简,求证,已知,则,函数的最大值是等内容,欢迎下载使用。