人教A版 (2019)必修 第一册5.4 三角函数的图象与性质教学课件ppt
展开
这是一份人教A版 (2019)必修 第一册5.4 三角函数的图象与性质教学课件ppt,共60页。PPT课件主要包含了函数的奇偶性,知识梳理,f-x=fx,最小正数,知识拓展,基础自测,题型分类深度剖析,命题点2求参数问题,-10,函数的性质等内容,欢迎下载使用。
f(-x)=-f(x)
2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有 ,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个 的正数,那么这个 就叫做f(x)的最小正周期.
f(x+T)=f(x)
1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).
题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( )(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.( )(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( )(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.( )
题组二 教材改编2.[P39A组T6]已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x(1+x),则f(-1)=_____.
解析 f(1)=1×2=2,又f(x)为奇函数,∴f(-1)=-f(1)=-2.
4.[P39A组T6]设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为______________.
解析 由图象可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x<0时,f(x)<0,当-5≤x0.综上,f(x)<0的解集为(-2,0)∪(2,5].
(-2,0)∪(2,5]
解析 依题意得f(-x)=f(x),∴b=0,又a-1=-2a,
题组三 易错自纠5.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是
6.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=______.
解析 ∵f(x)为偶函数,∴f(-1)=f(1).又f(x)的图象关于直线x=2对称,∴f(1)=f(3).∴f(-1)=3.
典例 判断下列函数的奇偶性:
题型一 判断函数的奇偶性
∴f(-x)=-f(x)且f(-x)=f(x),∴函数f(x)既是奇函数又是偶函数.
∴函数f(x)为奇函数.
解 显然函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x<0时,-x>0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知:对于定义域内的任意x,总有f(-x)=-f(x),∴函数f(x)为奇函数.
判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数)是否成立.
跟踪训练 (1)下列函数中,既不是奇函数,也不是偶函数的是A.y=x+sin 2x B.y=x2-cs xC.y=2x+ D.y=x2+sin x
解析 对于A,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),为奇函数;对于B,f(-x)=(-x)2-cs(-x)=x2-cs x=f(x),为偶函数;
对于D,y=x2+sin x既不是偶函数也不是奇函数.
(2)函数f(x)=lg|sin x|是A.最小正周期为π的奇函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为2π的偶函数
解析 易知函数的定义域为{x|x≠kπ,k∈Z},关于原点对称,又f(-x)=lg|sin(-x)|=lg|-sin x|=lg|sin x|=f(x),所以f(x)是偶函数,又函数y=|sin x|的最小正周期为π,所以函数f(x)=lg|sin x|是最小正周期为π的偶函数.
题型二 函数的周期性及其应用
解析 由于函数f(x)是周期为4的奇函数,
2.(2017·山东)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=_____.
解析 ∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),∴f(x)是周期为6的周期函数,∴f(919)=f(153×6+1)=f(1).又f(x)是定义在R上的偶函数,∴f(1)=f(-1)=6,即f(919)=6.
3.定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x
相关课件
这是一份高中数学人教A版 (2019)必修 第一册第五章 三角函数5.4 三角函数的图象与性质集体备课课件ppt,共47页。PPT课件主要包含了目标认知,fx+T,周期函数,最小正周期,坐标原点,xkπk∈Z等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质集体备课课件ppt,共36页。PPT课件主要包含了周期函数,fx+T,奇函数,偶函数等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)必修 第一册5.4 三角函数的图象与性质备课课件ppt,共38页。PPT课件主要包含了内容索引,课前篇自主预习,课堂篇探究学习,课标阐释,思维脉络,知识点拨,最小正周期,答案0,答案A,答案C等内容,欢迎下载使用。