【备战2023高考】数学考点全复习——第58讲《圆与圆的位置关系》精选题(新高考专用)
展开第58讲 圆与圆的位置关系
【基础知识回顾】
圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=r(r1>0),
圆O2:(x-a2)2+(y-b2)2=r(r2>0).
方法 位置关系 | 几何法:圆心距d与r1,r2的关系 | 代数法:两圆方程联立组成方程组的解的情况 |
外离 |
|
|
外切 |
|
|
相交 |
|
|
内切 |
|
|
内含 |
|
|
常用结论
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).
1、若圆与圆外切,则
A. B. C. D.
2、圆C1:(x+1)2+(y-2)2=4与圆C2:(x-3)2+(y-2)2=4的公切线的条数是( )
A.1 B.2 C.3 D.4
3、圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦长为( )
A. 2 B. 2 C. 3 D. 2
4、(2022·海口模拟)已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则下列选项错误的是( )
A.圆O1和圆O2有两条公切线
B.直线AB的方程为x-y+1=0
C.圆O2上存在两点P和Q使得|PQ|>|AB|
D.圆O1上的点到直线AB的最大距离为2+
5、(河北省石家庄二中2019届期末)已知圆C1:x2+y2-2mx+4y+m2-5=0与圆C2:x2+y2+2x-2my+m2-3=0,若圆C1与圆C2相外切,则实数m=________.
考向一 圆与圆的位置关系
例1、已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.
(1)m取何值时两圆外切?
(2)m取何值时两圆内切?
(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.
变式1、(1)已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则两圆公共弦所在的直线方程是____________.
(2)两圆x2+y2-6x+6y-48=0与x2+y2+4x-8y-44=0公切线的条数是________.
(3)已知⊙O的方程是x2+y2-2=0,⊙O′的方程是x2+y2-8x+10=0,若由动点P向⊙O和⊙O′所引的切线长相等,则动点P的轨迹方程是________.
变式2、分别求当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交和相切.
变式3、(2022·来宾、玉林、梧州模拟)若圆C1:(x-1)2+(y-a)2=4与圆C2:(x+2)2+(y+1)2=a2相交,则正实数a的取值范围为( )
A.(3,+∞) B.(2,+∞)
C. D.(3,4)
方法总结:(1)判断两圆的位置关系多用几何法,即用两圆圆心距与半径和或差的关系判断,一般不采用代数法.
(2)求两圆公共弦长的方法是在其中一圆中,由弦心距d,半弦长,半径r所在线段构成直角三角形,利用勾股定理求解.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.
考向二 圆与圆的综合问题
例2、已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为________.
变式1、 已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相内切, 则 a2+b2的最小值为__________.
变式2、圆C1:x2+y2-2x+10y-24=0与圆C2:x2+y2+2x+2y-8=0的公共弦所在直线的方程为______________,公共弦长为________.
变式3、已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:
(1)m取何值时两圆外切?
(2)当m=45时两圆的公共弦所在直线的方程和公共弦的长.
变式4、(1)已知点M与两个定点O(0,0),A(3,0)的距离之比为,求点M的轨迹方程.
(2)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.
方法总结:圆与圆的综合题目涉及到参数的问题,解题思路就是通过圆与圆的位置关系,寻求参数之间的关系,然后转化为函数的思想进行解决
1、.(山东卷)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是( )
A.内切 B.相交
C.外切 D.相离
2、若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是( )
A.3 B.4
C.2 D.8
3、若圆与圆外切,则
A. B. C. D.
4、【山东文数】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是( )
(A)内切(B)相交(C)外切(D)相离
5、【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________.
【备战2023高考】数学考点全复习——第73讲《统计案例》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第73讲《统计案例》精选题(新高考专用),文件包含备战2023高考数学考点全复习第73讲《统计案例》精选题解析版docx、备战2023高考数学考点全复习第73讲《统计案例》精选题原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【备战2023高考】数学考点全复习——第72讲《正态分布》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第72讲《正态分布》精选题(新高考专用),文件包含备战2023高考数学考点全复习第72讲《正态分布》精选题解析版docx、备战2023高考数学考点全复习第72讲《正态分布》精选题原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
【备战2023高考】数学考点全复习——第65讲《排列与组合》精选题(新高考专用): 这是一份【备战2023高考】数学考点全复习——第65讲《排列与组合》精选题(新高考专用),文件包含备战2023高考数学考点全复习第65讲《排列与组合》精选题解析版docx、备战2023高考数学考点全复习第65讲《排列与组合》精选题原卷版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。