新疆巴音郭楞州库尔勒市巴州三中学2021-2022学年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是( )
A.线段PB B.线段BC C.线段CQ D.线段AQ
2.的算术平方根为( )
A. B. C. D.
3.的平方根是( )
A.2 B. C.±2 D.±
4.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置( )
A.点A的左侧 B.点A点B之间
C.点B点C之间 D.点C的右侧
5.在,,则的值为( )
A. B. C. D.
6.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 ( )
A.2 B.2 C.4 D.3
7.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A. B. C. D.
8.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则( )
①B地在C地的北偏西50°方向上;
②A地在B地的北偏西30°方向上;
③cos∠BAC=;
④∠ACB=50°.其中错误的是( )
A.①② B.②④ C.①③ D.③④
9.计算的正确结果是( )
A. B.- C.1 D.﹣1
10.下列计算正确的是( )
A.a2•a3=a6 B.(a2)3=a6 C.a2+a2=a3 D.a6÷a2=a3
11.轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出的方程是( ).
A. B.
C. D.
12.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )
A.3.1; B.4; C.2; D.6.1.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.
14.如图,在△ABC 中,AB=AC,BC=8. 是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则的值为_____________.
15.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.
16.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
17.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
18.函数y= 中,自变量x的取值范围为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
20.(6分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?
21.(6分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
(1)∠CAD=______度;
(2)求∠CDF的度数;
(3)用等式表示线段CD和CE之间的数量关系,并证明.
22.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.
(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为 ;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P'的坐标为 ;
(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';
(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.
23.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
24.(10分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.
(1)AB= .
(2)当点N在边BC上时,x= .
(1)求y与x之间的函数关系式.
(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.
25.(10分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
星期
一
二
三
四
五
每股涨跌(元)
+2
﹣1.4
+0.9
﹣1.8
+0.5
根据上表回答问题:
(1)星期二收盘时,该股票每股多少元?
(2)周内该股票收盘时的最高价,最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?
26.(12分)如图,点在线段上,,,.求证:.
27.(12分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据三角形高线的定义即可解题.
【详解】
解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,
故选C.
【点睛】
本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.
2、B
【解析】
分析:先求得的值,再继续求所求数的算术平方根即可.
详解:∵=2,
而2的算术平方根是,
∴的算术平方根是,
故选B.
点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.
3、D
【解析】
先化简,然后再根据平方根的定义求解即可.
【详解】
∵=2,2的平方根是±,
∴的平方根是±.
故选D.
【点睛】
本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.
4、C
【解析】
分析:
根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.
详解:
A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;
B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;
C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;
D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.
故选C.
点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.
5、A
【解析】
本题可以利用锐角三角函数的定义求解即可.
【详解】
解:tanA=,
∵AC=2BC,
∴tanA=.
故选:A.
【点睛】
本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
6、A
【解析】
连接CC′,
∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,
∴∠ADC′=∠ADC=30°,CD=C′D,
∴∠CDC′=∠ADC+∠ADC′=60°,
∴△DCC′是等边三角形,
∴∠DC′C=60°,
∵在△ABC中,AD是BC边的中线,
即BD=CD,
∴C′D=BD,
∴∠DBC′=∠DC′B=∠CDC′=30°,
∴∠BC′C=∠DC′B+∠DC′C=90°,
∵BC=4,
∴BC′=BC•cos∠DBC′=4×=2,
故选A.
【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.
7、C
【解析】
根据平行四边形的性质和圆周角定理可得出答案.
【详解】
根据平行四边形的性质可知∠B=∠AOC,
根据圆内接四边形的对角互补可知∠B+∠D=180°,
根据圆周角定理可知∠D=∠AOC,
因此∠B+∠D=∠AOC+∠AOC=180°,
解得∠AOC=120°,
因此∠ADC=60°.
故选C
【点睛】
该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.
8、B
【解析】
先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.
【详解】
如图所示,
由题意可知,∠1=60°,∠4=50°,
∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;
∵∠2=60°,
∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;
∵∠1=∠2=60°,
∴∠BAC=30°,
∴cos∠BAC=,故③正确;
∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.
故选B.
【点睛】
本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.
9、D
【解析】
根据有理数加法的运算方法,求出算式的正确结果是多少即可.
【详解】
原式
故选:D.
【点睛】
此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
1相加,仍得这个数.
10、B
【解析】
试题解析:A.故错误.
B.正确.
C.不是同类项,不能合并,故错误.
D.
故选B.
点睛:同底数幂相乘,底数不变,指数相加.
同底数幂相除,底数不变,指数相减.
11、A
【解析】
通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系,据此列出方程即可.
【详解】
解:设A港和B港相距x千米,可得方程:
故选:A.
【点睛】
本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.
12、A
【解析】∵数据组2、x、8、1、1、2的众数是2,
∴x=2,
∴这组数据按从小到大排列为:2、2、2、1、1、8,
∴这组数据的中位数是:(2+1)÷2=3.1.
故选A.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、18或21
【解析】
当腰为8时,周长为8+8+5=21;
当腰为5时,周长为5+5+8=18.
故此三角形的周长为18或21.
14、2
【解析】
【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.
试题解析:如图,作AD⊥BC,垂足为D,连接OB,
∵AB=AC,∴BD=CD=BC=×8=4,
∴AD垂直平分BC,
∴AD过圆心O,
在Rt△OBD中,OD==3,
∴AD=AO+OD=8,
在Rt△ABD中,tan∠ABC==2,
故答案为2.
【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.
15、
【解析】
过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=
【详解】
解:
如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.
∵∠OAB=30°,∠ADE=90°,∠DEB=90°
∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°
∴∠DOA=∠OBE
∴△ADO∽△OEB
∵∠OAB=30°,∠AOB=90°,
∴OA∶OB=
∵点A坐标为(3,2)
∴AD=3,OD=2
∵△ADO∽△OEB
∴
∴OE
∵OC∥AD∥BE
根据平行线分线段成比例得:
AC:BC=OD:OE=2∶=
故答案为.
【点睛】
本题考查三角形相似的证明以及平行线分线段成比例.
16、2
【解析】
如图,过A点作AE⊥y轴,垂足为E,
∵点A在双曲线上,∴四边形AEOD的面积为1
∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3
∴四边形ABCD为矩形,则它的面积为3-1=2
17、1.
【解析】
解:设圆锥的底面圆半径为r,
根据题意得1πr=,
解得r=1,
即圆锥的底面圆半径为1cm.
故答案为:1.
【点睛】
本题考查圆锥的计算,掌握公式正确计算是解题关键.
18、x≠1.
【解析】
该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.
【详解】
根据题意得:x−1≠0,
解得:x≠1.
故答案为x≠1.
【点睛】
本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1),;(2)P,.
【解析】
试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
得:a=-1+4,解得:a=3,
∴点A的坐标为(1,3).
把点A(1,3)代入反比例函数y=,
得:3=k,
∴反比例函数的表达式y=,
联立两个函数关系式成方程组得:,
解得:,或,
∴点B的坐标为(3,1).
(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.
∵点B、D关于x轴对称,点B的坐标为(3,1),
∴点D的坐标为(3,- 1).
设直线AD的解析式为y=mx+n,
把A,D两点代入得:,
解得:,
∴直线AD的解析式为y=-2x+1.
令y=-2x+1中y=0,则-2x+1=0,
解得:x=,
∴点P的坐标为(,0).
S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
=.
考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
20、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
【解析】
试题分析:
(1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
(2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
试题解析:
(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
(2)列表法:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
∴P2=,
∵P1=,P2=,P1≠P2
∴淇淇与嘉嘉抽到勾股数的可能性不一样.
21、(1)45;(2)90°;(3)见解析.
【解析】
(1)根据等腰三角形三线合一可得结论;
(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
【详解】
(1)解:∵AB=AC,M是BC的中点,
∴AM⊥BC,∠BAD=∠CAD,
∵∠BAC=90°,
∴∠CAD=45°,
故答案为:45
(2)解:如图,连接DB.
∵AB=AC,∠BAC=90°,M是BC的中点,
∴∠BAD=∠CAD=45°.
∴△BAD≌△CAD.
∴∠DBA=∠DCA,BD=CD.
∵CD=DF,
∴BD=DF.
∴∠DBA=∠DFB=∠DCA.
∵∠DFB+∠DFA=180°,
∴∠DCA+∠DFA=180°.
∴∠BAC+∠CDF=180°.
∴∠CDF=90°.
(3).
证明:∵∠EAD=90°,
∴∠EAF=∠DAF=45°.
∵AD=AE,
∴△EAF≌△DAF.
∴DF=EF.
由②可知,.
∴.
【点睛】
此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
22、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)
【解析】
(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;
②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;
③当P(a,b)时,同①的方法得,即可得出结论;
(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;
(3)先确定出yPP'=x+3,即可得出结论.
【详解】
解:(1)如图1,
①当P(﹣4,2)时,
∵PA⊥y轴,
∴∠PAH=90°,OA=2,PA=4,
由旋转知,P'A=4,∠PAP'=60°,
∴∠P'AH=30°,
在Rt△P'AH中,P'H=P'A=2,
∴AH=P'H=2,
∴OH=OA+AH=2+2,
∴P'(﹣2,2+2),
②当P'(﹣5,16)时,
在Rt△P'AH中,∠P'AH=30°,P'H=5,
∴P'A=10,AH=5,
由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,
∴P(﹣10,16﹣5),
③当P(a,b)时,同①的方法得,P'(,b﹣a),
故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);
(2)如图2,过点Q作QB⊥y轴于B,
∴∠BQQ'=60°,
由题意知,△PAP'是等边三角形,
∴∠PAP'=∠PP'A=60°,
∵QB⊥y轴,PA⊥y轴,
∴QB∥PA,
∴∠P'QQ'=∠PAP'=60°,
∴∠P'QQ'=60°=∠PP'A,
∴PP'∥QQ';
(3)设yPP'=kx+b',
由题意知,k=,
∵直线经过点(,6),
∴b'=3,
∴yPP'=x+3,
令y=0,
∴x=﹣,
∴直线PP'与x轴的交点坐标(﹣,0).
【点睛】
此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.
23、(1)证明见解析;(2)BH=.
【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;
(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.
【详解】
(1)连接OC,
∵AB是⊙O的直径,点C是的中点,
∴∠AOC=90°,
∵OA=OB,CD=AC,
∴OC是△ABD是中位线,
∴OC∥BD,
∴∠ABD=∠AOC=90°,
∴AB⊥BD,
∵点B在⊙O上,
∴BD是⊙O的切线;
(2)由(1)知,OC∥BD,
∴△OCE∽△BFE,
∴,
∵OB=2,
∴OC=OB=2,AB=4,,
∴,
∴BF=3,
在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,
∵S△ABF=AB•BF=AF•BH,
∴AB•BF=AF•BH,
∴4×3=5BH,
∴BH=.
【点睛】
此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.
24、(1)2;(2);(1)详见解析;(4)满足条件的x的值为.
【解析】
(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.
【详解】
解:(1)在中,,
故答案为2.
(2)如图1中,
∴四边形PAMN是平行四边形,
当点在上时,,
.
(1)①当时,如图1,
.
②当时,如图2,
y
③当时,如图1,
(4)如图4中,当点是中点时,满足条件
.
如图2中,当点是中点时,满足条件.
.
综上所述,满足条件的x的值为或.
【点睛】
此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.
25、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.
【解析】
试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.
(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.
(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.
试题解析:
(1)星期二收盘价为25+2−1.4=25.6(元/股)
答:该股票每股25.6元.
(2)收盘最高价为25+2=27(元/股)
收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)
答:收盘最高价为27元/股,收盘最低价为24.7元/股.
(3)(25.2-25) ×1000-5‰×1000×(25.2+25)=200-251=-51(元)
答:小王的本次收益为-51元.
26、证明见解析
【解析】
若要证明∠A=∠E,只需证明△ABC≌△EDB,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC,可得∠ABC=∠BDE,因此利用SAS问题得解.
【详解】
∵DE//BC
∴∠ABC=∠BDE
在△ABC与△EDB中
,
∴△ABC≌△EDB(SAS)
∴∠A=∠E
27、(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).
【解析】
试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.
试题解析:(1)∵y=a(x+3)(x﹣1),
∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
∵直线y=﹣x+b经过点A,
∴b=﹣3,
∴y=﹣x﹣3,
当x=2时,y=﹣5,
则点D的坐标为(2,﹣5),
∵点D在抛物线上,
∴a(2+3)(2﹣1)=﹣5,
解得,a=﹣,
则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
(2)作PH⊥x轴于H,
设点P的坐标为(m,n),
当△BPA∽△ABC时,∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即=,
∴=,即n=﹣a(m﹣1),
∴,
解得,m1=﹣4,m2=1(不合题意,舍去),
当m=﹣4时,n=5a,
∵△BPA∽△ABC,
∴=,即AB2=AC•PB,
∴42=•,
解得,a1=(不合题意,舍去),a2=﹣,
则n=5a=﹣,
∴点P的坐标为(﹣4,﹣);
当△PBA∽△ABC时,∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即=,
∴=,即n=﹣3a(m﹣1),
∴,
解得,m1=﹣6,m2=1(不合题意,舍去),
当m=﹣6时,n=21a,
∵△PBA∽△ABC,
∴=,即AB2=BC•PB,
∴42=•,
解得,a1=(不合题意,舍去),a2=﹣,
则点P的坐标为(﹣6,﹣),
综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);
(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
则tan∠DAN===,
∴∠DAN=60°,
∴∠EDF=60°,
∴DE==EF,
∴Q的运动时间t=+=BE+EF,
∴当BE和EF共线时,t最小,
则BE⊥DM,E(1,﹣4).
考点:二次函数综合题.
新疆巴州库尔勒市2024年中考数学一模模拟试卷: 这是一份新疆巴州库尔勒市2024年中考数学一模模拟试卷,共7页。
06,2024年新疆巴音郭楞州库尔勒市中考数学二模试卷: 这是一份06,2024年新疆巴音郭楞州库尔勒市中考数学二模试卷,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年新疆巴音郭楞州库尔勒市中考数学一模试卷(含详细答案解析): 这是一份2024年新疆巴音郭楞州库尔勒市中考数学一模试卷(含详细答案解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。