新疆维吾尔自治区第二师三十团中学2022年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为( )
A. B. C. D.
2.二次函数y=(2x-1)2+2的顶点的坐标是( )
A.(1,2) B.(1,-2) C.(,2) D.(-,-2)
3.半径为的正六边形的边心距和面积分别是( )
A., B.,
C., D.,
4.下列图形中,既是中心对称图形又是轴对称图形的是( )
A.正五边形 B.平行四边形 C.矩形 D.等边三角形
5.计算(x-l)(x-2)的结果为( )
A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+2
6.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于( )
A.30° B.35° C.40° D.50°
7.这个数是( )
A.整数 B.分数 C.有理数 D.无理数
8.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于( )
A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
9.下列运算正确的是( )
A. B.
C. D.
10.如图,下列条件不能判定△ADB∽△ABC的是( )
A.∠ABD=∠ACB B.∠ADB=∠ABC
C.AB2=AD•AC D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
12.函数y=中,自变量x的取值范围是________.
13.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.
14.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
15.因式分解=______.
16.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.
17.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
19.(5分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
20.(8分)如图所示,点P位于等边的内部,且∠ACP=∠CBP.
(1)∠BPC的度数为________°;
(2)延长BP至点D,使得PD=PC,连接AD,CD.
①依题意,补全图形;
②证明:AD+CD=BD;
(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积.
21.(10分)如图,直线y=﹣x+2与反比例函数 (k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
求a,b的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
22.(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;
(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;
(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; .
23.(12分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.
(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?
(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?
24.(14分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.
(I)根据题意,填写下表:
月用水量(吨/户)
4
10
16
……
应收水费(元/户)
40
……
(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;
(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.
故选B.
2、C
【解析】
试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
考点:二次函数
点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
3、A
【解析】
首先根据题意画出图形,易得△OBC是等边三角形,继而可得正六边形的边长为R,然后利用解直角三角形求得边心距,又由S正六边形=求得正六边形的面积.
【详解】
解:如图,O为正六边形外接圆的圆心,连接OB,OC,过点O作OH⊥BC于H,
∵六边形ABCDEF是正六边形,半径为,
∴∠BOC=,
∵OB=OC=R,
∴△OBC是等边三角形,
∴BC=OB=OC=R,
∵OH⊥BC,
∴在中,,
即,
∴,即边心距为;
∵,
∴S正六边形=,
故选:A.
【点睛】
本题考查了正多边形和圆的知识;求得正六边形的中心角为60°,得到等边三角形是正确解答本题的关键.
4、C
【解析】
分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.
详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.
B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.
C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.
D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.
故选C.
点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.
5、B
【解析】
根据多项式的乘法法则计算即可.
【详解】
(x-l)(x-2)
= x2-2x-x+2
= x2-3x+2.
故选B.
【点睛】
本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.
6、C
【解析】
分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.
解答:解:∵∠APD是△APC的外角,
∴∠APD=∠C+∠A;
∵∠A=30°,∠APD=70°,
∴∠C=∠APD-∠A=40°;
∴∠B=∠C=40°;
故选C.
7、D
【解析】
由于圆周率π是一个无限不循环的小数,由此即可求解.
【详解】
解:实数π是一个无限不循环的小数.所以是无理数.
故选D.
【点睛】
本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
8、A
【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
【详解】
由数轴可知,b<a<0<c,
∴c-a>0,a+b<0,
则|c-a|-|a+b|=c-a+a+b=c+b,
故选A.
【点睛】
本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
9、D
【解析】
【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
【详解】A. ,故A选项错误,不符合题意;
B. ,故B选项错误,不符合题意;
C. ,故C选项错误,不符合题意;
D. ,正确,符合题意,
故选D.
【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
10、D
【解析】
根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.
【详解】
解:A、∵∠ABD=∠ACB,∠A=∠A,
∴△ABC∽△ADB,故此选项不合题意;
B、∵∠ADB=∠ABC,∠A=∠A,
∴△ABC∽△ADB,故此选项不合题意;
C、∵AB2=AD•AC,
∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;
D、=不能判定△ADB∽△ABC,故此选项符合题意.
故选D.
【点睛】
点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.
二、填空题(共7小题,每小题3分,满分21分)
11、4n﹣1.
【解析】
由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.
12、x≤1
【解析】
分析:根据二次根式有意义的条件解答即可.
详解:
∵二次根式有意义,被开方数为非负数,
∴1 -x≥0,
解得x≤1.
故答案为x≤1.
点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.
13、
【解析】
分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
∵∠C+∠KDC=90°,∴∠C=∠HDA.
∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
∴CK:KD=HD:HA,∴CK:100=100:15,
解得:CK=.
故答案为:.
点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.
14、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
【点睛】
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
15、.
【解析】
解:==,故答案为:.
16、8。
【解析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:
由函数图象得:进水管每分钟的进水量为:20÷4=5升。
设出水管每分钟的出水量为a升,由函数图象,得,解得:。
∴关闭进水管后出水管放完水的时间为:(分钟)。
17、 (2,3)
【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
【详解】
如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,
∵点A、B的坐标分别为(-2,1)、(1,0),
∴AC=2,BC=2+1=3,
∵∠ABA′=90°,
∴ABC+∠A′BC′=90°,
∵∠BAC+∠ABC=90°,
∴∠BAC=∠A′BC′,
∵BA=BA′,∠ACB=∠BC′A′,
∴△ABC≌△BA′C′,
∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
∴点A′的坐标为(2,3).
故答案为(2,3).
【点睛】
此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
三、解答题(共7小题,满分69分)
18、(1)作图见解析;.(2)作图见解析;(3)1.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=1.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
19、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
20、(1)120°;(2)①作图见解析;②证明见解析;(3) .
【解析】
【分析】(1)根据等边三角形的性质,可知∠ACB=60°,在△BCP中,利用三角形内角和定理即可得;
(2)①根据题意补全图形即可;
②证明,根据全等三角形的对应边相等可得,从而可得;
(3)如图2,作于点,延长线于点,根据已知可推导得出,由(2)得,,根据 即可求得.
【详解】(1)∵三角形ABC是等边三角形,
∴∠ACB=60°,即∠ACP+∠BCP=60°,
∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,
∴∠BPC=120°,
故答案为120;
(2)①∵如图1所示.
②在等边中,,
∴,
∵,
∴,
∴,
∴,
∵,
∴为等边三角形,
∵,
∴
在和中,
,
∴ ,
∴,
∴;
(3)如图2,作于点,延长线于点,
∵,
∴,
∴,
∴,
又由(2)得,,
.
【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.
21、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
【解析】
(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3−n|,进而建立方程求解即可得出结论;
(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
【详解】
(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
∴a=-1,b=-1,
∴A(-1,3),B(3,-1),
∵点A(-1,3)在反比例函数y=上,
∴k=-1×3=-3,
∴反比例函数解析式为y=;
(2)设点P(n,-n+2),
∵A(-1,3),
∴C(-1,0),
∵B(3,-1),
∴D(3,0),
∴S△ACP=AC×|xP−xA|=×3×|n+1|,S△BDP=BD×|xB−xP|=×1×|3−n|,
∵S△ACP=S△BDP,
∴×3×|n+1|=×1×|3−n|,
∴n=0或n=−3,
∴P(0,2)或(−3,5);
(3)设M(m,0)(m>0),
∵A(−1,3),B(3,−1),
∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,
∵△MAB是等腰三角形,
∴①当MA=MB时,
∴(m+1)2+9=(m−3)2+1,
∴m=0,(舍)
②当MA=AB时,
∴(m+1)2+9=32,
∴m=−1+或m=−1−(舍),
∴M(−1+,0)
③当MB=AB时,(m−3)2+1=32,
∴m=3+或m=3−(舍),
∴M(3+,0)
即:满足条件的M(−1+,0)或(3+,0).
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.
22、(1)证明见解析;(2)AE=BF,(3)AE=BF;
【解析】
(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);
【详解】
(1)证明:
∵四边形ABCD是正方形,
∴∠ABC=∠C,AB=BC.
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴AE=BF;
(2)解:如图2中,结论:AE=BF,
理由:∵四边形ABCD是矩形,
∴∠ABC=∠C,
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF,
∴△ABE∽△BCF,
∴,
∴AE=BF.
(3)结论:AE=BF.
理由:∵四边形ABCD是矩形,
∴∠ABC=∠C,
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF,
∴△ABE∽△BCF,
∴,
∴AE=BF.
【点睛】
本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.
23、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析
【解析】
分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;
(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.
详解:
(1)乘公交车所占的百分比=,
调查的样本容量50÷=300人,
骑自行车的人数300×=100人,
骑自行车的人数多,多100﹣50=50人;
(2)全校骑自行车的人数2400×=800人,
800>600,
故学校准备的600个自行车停车位不足够.
点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
24、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨
【解析】
(Ⅰ)根据题意计算即可;
(Ⅱ)根据分段函数解答即可;
(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.
【详解】
解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;
当月用水量为16吨时,应收水费=15×4+1×6=66元;
故答案为16;66;
(Ⅱ)当x≤15时,y=4x;
当x>15时,y=15×4+(x﹣15)×6=6x﹣30;
(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.
由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126
X=18,
∴居民甲上月用水量为18吨,居民乙用水12吨.
【点睛】
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.
2023年北京市海淀区师达中学中考数学四模试卷(含解析): 这是一份2023年北京市海淀区师达中学中考数学四模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年新疆生产建设兵团十四师皮山农场中学中考数学一模试卷(含解析): 这是一份2023年新疆生产建设兵团十四师皮山农场中学中考数学一模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年重点中学中考数学五模试卷含解析: 这是一份2022年重点中学中考数学五模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程时,去分母后变形为等内容,欢迎下载使用。