终身会员
搜索
    上传资料 赚现金
    新疆维吾尔自治区乌鲁木齐市2021-2022学年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    新疆维吾尔自治区乌鲁木齐市2021-2022学年初中数学毕业考试模拟冲刺卷含解析01
    新疆维吾尔自治区乌鲁木齐市2021-2022学年初中数学毕业考试模拟冲刺卷含解析02
    新疆维吾尔自治区乌鲁木齐市2021-2022学年初中数学毕业考试模拟冲刺卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新疆维吾尔自治区乌鲁木齐市2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份新疆维吾尔自治区乌鲁木齐市2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,实数﹣5.22的绝对值是,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是(  )

    A. B.
    C. D.
    2.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是( )

    A. B. C. D.
    3.如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是  

    A. B.
    C. D.
    4.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 (  )

    A.2 B.2 C.4 D.3
    5.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2=4a;④a+b+c<1.其中正确结论的个数是(  )

    A.1 B.2 C.3 D.4
    6.实数﹣5.22的绝对值是(  )
    A.5.22 B.﹣5.22 C.±5.22 D.
    7.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )

    A.90° B.60° C.45° D.30°
    8.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是(  )

    A. B.
    C. D.
    9.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是(   ).

    A.36° B.54° C.72° D.30°
    10.下列计算正确的是(  )
    A.x4•x4=x16 B.(a+b)2=a2+b2
    C.=±4 D.(a6)2÷(a4)3=1
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,A、B是反比例函数y=(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=1.则k=_______.

    12.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.

    13.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.

    14.已知实数m,n满足,,且,则= .
    15.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.
    16.分解因式: .
    17.分解因式:x2y﹣2xy2+y3=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)综合与探究
    如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
    (1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
    (2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
    ①当点G与点D重合时,求平移距离m的值;
    ②用含x的式子表示平移距离m,并求m的最大值;
    (3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.

    19.(5分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
    请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为   .的面积为   .
    20.(8分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.

    21.(10分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时?

    22.(10分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5 km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)

    23.(12分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
    (1)求证:PC∥BD;
    (2)若⊙O的半径为2,∠ABP=60°,求CP的长;
    (3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.

    24.(14分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据题意,将运动过程分成两段.分段讨论求出解析式即可.
    【详解】
    ∵BD=2,∠B=60°,
    ∴点D到AB距离为,
    当0≤x≤2时,
    y=;
    当2≤x≤4时,y=.
    根据函数解析式,A符合条件.
    故选A.
    【点睛】
    本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
    2、A
    【解析】
    函数→一次函数的图像及性质
    3、A
    【解析】
    依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象.
    【详解】
    解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,

    抛物线向上平移5个单位后可得:,即,
    形成的图象是A选项.
    故选A.
    【点睛】
    本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.
    4、A
    【解析】
    连接CC′,
    ∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,
    ∴∠ADC′=∠ADC=30°,CD=C′D,
    ∴∠CDC′=∠ADC+∠ADC′=60°,
    ∴△DCC′是等边三角形,
    ∴∠DC′C=60°,
    ∵在△ABC中,AD是BC边的中线,
    即BD=CD,
    ∴C′D=BD,
    ∴∠DBC′=∠DC′B=∠CDC′=30°,
    ∴∠BC′C=∠DC′B+∠DC′C=90°,
    ∵BC=4,
    ∴BC′=BC•cos∠DBC′=4×=2,
    故选A.

    【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.
    5、C
    【解析】
    ①根据图象知道:a<1,c>1,∴ac<1,故①正确;
    ②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;
    ③根据图象知道:x=1时,y=a++b+c>1,故③错误;
    ④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.
    其中正确的是①②④.故选C
    6、A
    【解析】
    根据绝对值的性质进行解答即可.
    【详解】
    实数﹣5.1的绝对值是5.1.
    故选A.
    【点睛】
    本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
    7、C
    【解析】
    试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
    试题解析:连接AC,如图:

    根据勾股定理可以得到:AC=BC=,AB=.
    ∵()1+()1=()1.
    ∴AC1+BC1=AB1.
    ∴△ABC是等腰直角三角形.
    ∴∠ABC=45°.
    故选C.
    考点:勾股定理.
    8、D
    【解析】
    摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.
    【详解】
    解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,
    ∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.
    故选D.
    【点睛】
    本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.
    9、A
    【解析】
    由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.
    【详解】
    解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.
    又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.
    故选A.
    【点睛】
    本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.
    10、D
    【解析】
    试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
    考点:1、幂的运算;2、完全平方公式;3、算术平方根.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.
    则AD∥BE,AD=2BE=,
    ∴B、E分别是AC、DC的中点.
    ∴△ADC∽△BEC,
    ∵BE:AD=1:2,
    ∴EC:CD=1:2,
    ∴EC=DE=a,
    ∴OC=3a,
    又∵A(a, ),B(2a, ),
    ∴S△AOC=AD×CO=×3a× ==1,
    解得:k=2.
    12、.
    【解析】
    试题解析:如图,连接OM交AB于点C,连接OA、OB,

    由题意知,OM⊥AB,且OC=MC=1,
    在RT△AOC中,∵OA=2,OC=1,
    ∴cos∠AOC=,AC=
    ∴∠AOC=60°,AB=2AC=2,
    ∴∠AOB=2∠AOC=120°,
    则S弓形ABM=S扇形OAB-S△AOB
    =
    =,
    S阴影=S半圆-2S弓形ABM
    =π×22-2()
    =2.
    故答案为2.
    13、1
    【解析】
    根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴DC∥AB,
    ∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,
    ∴△NQC∽△MQA,
    同理得:△DPC∽△MPA,
    ∵P、Q为对角线AC的三等分点,
    ∴,,
    设CN=x,AM=1x,
    ∴,
    解得,x=1,
    ∴CN=1,
    故答案为1.
    【点睛】
    本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.
    14、.
    【解析】
    试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.
    试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.
    ∴原式===,故答案为.
    考点:根与系数的关系.
    15、
    【解析】
    若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.
    【详解】
    解:∵方程有两个实数根,
    ∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,
    解得:k≤且k≠1,
    故答案为k≤且k≠1.
    【点睛】
    此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (3)△<0⇔方程没有实数根.
    16、
    【解析】
    分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式后继续应用平方差公式分解即可:.
    17、y(x﹣y)2
    【解析】
    原式提取公因式,再利用完全平方公式分解即可
    【详解】
    x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.
    【点睛】
    本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.

    三、解答题(共7小题,满分69分)
    18、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
    【解析】
    (3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
    ②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
    (2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
    【详解】
    解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
    解得:,
    ∴抛物线的表达式为y=﹣x3+x+2,
    把E(﹣4,y)代入得:y=﹣6,
    ∴点E的坐标为(﹣4,﹣6).
    (3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
    解得:,
    ∴直线BD的表达式为y=x﹣2.
    把x=0代入y=x﹣2得:y=﹣2,
    ∴D(0,﹣2).
    当点G与点D重合时,G的坐标为(0,﹣2).
    ∵GF∥x轴,
    ∴F的纵坐标为﹣2.
    将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
    解得:x=+3或x=﹣+3.
    ∵﹣4<x<4,
    ∴点F的坐标为(﹣+3,﹣2).
    ∴m=FG=﹣3.
    ②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
    ∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
    ∵﹣<0,
    ∴m有最大值,
    当x=0时,m的最大值为4.
    (2)当点F在x轴的左侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
    ∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
    解得:x=﹣3或x=4(舍去),
    ∴点F的坐标为(﹣3,0).
    当点F在x轴的右侧时,如下图所示:

    ∵△FDP与△FDG的面积比为3:3,
    ∴PD:DG=3:3.
    ∵FP∥HD,
    ∴FH:HG=3:3.
    设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
    ∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
    解得:x=﹣3或x=﹣﹣3(舍去),
    ∴点F的坐标为(﹣3,).
    综上所述,点F的坐标为(﹣3,0)或(﹣3,).
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    19、(1)见解析;(2)见解析;(3);(4)4.
    【解析】
    (1)根据C点坐标确定原点位置,然后作出坐标系即可;
    (2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
    (3)根据点在坐标系中的位置写出其坐标即可
    (4)利用长方形的面积剪去周围多余三角形的面积即可.
    【详解】
    解:(1)如图所示:
    (2)如图所示:
    (3)结合图形可得:;
    (4) .

    【点睛】
    此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
    20、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
    【解析】
    分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
    (2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
    详解:(1)∵tan∠AOH==
    ∴AH=OH=4
    ∴A(-4,3),代入,得
    k=-4×3=-12
    ∴反比例函数为

    ∴m=6
    ∴B(6,-2)

    ∴=,b=1
    ∴一次函数为
    (2)
    △AHO的周长为:3+4+5=12
    点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
    21、(1)y1=4x,y2=-5x+1.(2)km.(3)h.
    【解析】
    (1)由图象直接写出函数关系式;
    (2)若相遇,甲乙走的总路程之和等于两地的距离.
    【详解】
    (1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,
    乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.
    (2)由图象可知甲班速度为4km/h,乙班速度为5km/h,
    设甲、乙两班学生出发后,x小时相遇,则
    4x+5x=1,
    解得x=.
    当x=时,y2=−5×+1=,
    ∴相遇时乙班离A地为km.
    (3)甲、乙两班首次相距4千米,
    即两班走的路程之和为6km,
    故4x+5x=6,
    解得x=h.
    ∴甲、乙两班首次相距4千米时所用时间是h.
    22、35km
    【解析】
    试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.
    试题解析:如图,作CH⊥AD于H.设CH=xkm,

    在Rt△ACH中,∠A=37°,∵tan37°=,
    ∴AH=,
    在Rt△CEH中,∵∠CEH=45°,
    ∴CH=EH=x,
    ∵CH⊥AD,BD⊥AD,
    ∴CH∥BD,
    ∴,
    ∵AC=CB,
    ∴AH=HD,
    ∴=x+5,
    ∴x=≈15,
    ∴AE=AH+HE=+15≈35km,
    ∴E处距离港口A有35km.
    23、(1)证明见解析;(2)+;(3)的值不变,.
    【解析】
    (1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
    (2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
    (3)证明△CBP∽△ABD,根据相似三角形的性质解答.
    【详解】
    (1)证明:∵△ABC是等腰直角三角形,且AC=BC,
    ∴∠ABC=45°,∠ACB=90°,
    ∴∠APC=∠ABC=45°,
    ∴AB为⊙O的直径,
    ∴∠APB=90°,
    ∵PD=PB,
    ∴∠PBD=∠D=45°,
    ∴∠APC=∠D=45°,
    ∴PC∥BD;
    (2)作BH⊥CP,垂足为H,

    ∵⊙O的半径为2,∠ABP=60°,
    ∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
    在Rt△BCH中,CH=BC•cos∠BCH=,
    BH=BC•sin∠BCH=,
    在Rt△BHP中,PH=BH=,
    ∴CP=CH+PH=+;
    (3)的值不变,
    ∵∠BCP=∠BAP,∠CPB=∠D,
    ∴△CBP∽△ABD,
    ∴=,
    ∴=,即=.
    【点睛】
    本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.
    24、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
    【解析】
    (1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
    (2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
    【详解】
    (1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
    依题意有 ,
    解得:x=30,
    经检验,x=30是原方程的解,
    x+10=30+10=40,
    答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
    (2)设他们可购买y棵乙种树苗,依题意有
    30×(1﹣10%)(50﹣y)+40y≤1500,
    解得y≤11,
    ∵y为整数,
    ∴y最大为11,
    答:他们最多可购买11棵乙种树苗.
    【点睛】
    本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.

    相关试卷

    云南弥勒市2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份云南弥勒市2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,下列计算正确的是,已知等内容,欢迎下载使用。

    河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。

    河北保定竞秀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河北保定竞秀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了已知二次函数y=,已知,﹣18的倒数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map