云南省、贵州省2021-2022学年中考数学最后一模试卷含解析
展开
这是一份云南省、贵州省2021-2022学年中考数学最后一模试卷含解析,共18页。试卷主要包含了汽车刹车后行驶的距离s等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
2.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )
A.8×107 B.880×108 C.8.8×109 D.8.8×1010
3.如图图形中是中心对称图形的是( )
A. B.
C. D.
4.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是( )
A.①②③ B.①③④ C.①③⑤ D.②④⑤
5.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
A.若AB=CD,则四边形ABCD一定是等腰梯形;
B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
C.若,则四边形ABCD一定是矩形;
D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
6.已知x2-2x-3=0,则2x2-4x的值为( )
A.-6 B.6 C.-2或6 D.-2或30
7.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为( )
A.40° B.45° C.50° D.55°
8.关于反比例函数,下列说法正确的是( )
A.函数图像经过点(2,2); B.函数图像位于第一、三象限;
C.当时,函数值随着的增大而增大; D.当时,.
9.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是( )
A.10m B.20m C.30m D.40m
10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )
A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,BC=7,,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.
12.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.
13.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.
14.如图,在平行四边形中,点在边上,将沿折叠得到,点落在对角线上.若,,,则的周长为________.
15.点(a-1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是________.
16.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .
三、解答题(共8题,共72分)
17.(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?
18.(8分)如图,在四边形中,为一条对角线,,,.为的中点,连结.
(1)求证:四边形为菱形;
(2)连结,若平分,,求的长.
19.(8分)x取哪些整数值时,不等式5x+2>3(x-1)与x≤2-x都成立?
20.(8分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
21.(8分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
22.(10分)在边长为1的5×5的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.
23.(12分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
24.已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.
求证:; 若,,, 求的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
2、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
880亿=880 0000 0000=8.8×1010,
故选D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、B
【解析】
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.
【点睛】
本题考察了中心对称图形的含义.
4、C
【解析】
试题解析:∵抛物线的顶点坐标A(1,3),
∴抛物线的对称轴为直线x=-=1,
∴2a+b=0,所以①正确;
∵抛物线开口向下,
∴a<0,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以②错误;
∵抛物线的顶点坐标A(1,3),
∴x=1时,二次函数有最大值,
∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;
∵抛物线与x轴的一个交点为(4,0)
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(-2,0),所以④错误;
∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)
∴当1<x<4时,y2<y1,所以⑤正确.
故选C.
考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.
5、C
【解析】
A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
故选C.
6、B
【解析】
方程两边同时乘以2,再化出2x2-4x求值.
解:x2-2x-3=0
2×(x2-2x-3)=0
2×(x2-2x)-6=0
2x2-4x=6
故选B.
7、C
【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.
【详解】
∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=∠BOC=50°
故选:C.
【点睛】
考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.
8、C
【解析】
直接利用反比例函数的性质分别分析得出答案.
【详解】
A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;
B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;
C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;
D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;
故选C.
【点睛】
此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.
9、B
【解析】
利用配方法求二次函数最值的方法解答即可.
【详解】
∵s=20t-5t2=-5(t-2)2+20,
∴汽车刹车后到停下来前进了20m.
故选B.
【点睛】
此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.
10、D
【解析】
设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.
详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC 中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案为0<PB<.
点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
12、甲.
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.
【详解】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差.
故答案为:甲.
【点睛】
本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.
13、且
【解析】
试题解析: ∵一元二次方程有两个不相等的实数根,
∴m−1≠0且△=16−4(m−1)>0,解得m
相关试卷
这是一份云南省普洱市思茅区第四中学2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了的绝对值是,函数y=中,x的取值范围是等内容,欢迎下载使用。
这是一份贵州省毕节地区名校2022年中考数学最后一模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列各数是不等式组的解是等内容,欢迎下载使用。
这是一份贵州省黔西县市级名校2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。