搜索
    上传资料 赚现金
    英语朗读宝

    扬州市重点中学2022年中考考前最后一卷数学试卷含解析

    扬州市重点中学2022年中考考前最后一卷数学试卷含解析第1页
    扬州市重点中学2022年中考考前最后一卷数学试卷含解析第2页
    扬州市重点中学2022年中考考前最后一卷数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    扬州市重点中学2022年中考考前最后一卷数学试卷含解析

    展开

    这是一份扬州市重点中学2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了如图,将函数y=,如图,空心圆柱体的左视图是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从
    点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为

    A. B. C. D.
    2.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为( )

    A.30° B.45° C.60° D.75°
    3.a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    4.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是(  )

    A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
    C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
    5.在函数y=中,自变量x的取值范围是(  )
    A.x≥0 B.x≤0 C.x=0 D.任意实数
    6.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )

    A.仅有甲和乙相同 B.仅有甲和丙相同
    C.仅有乙和丙相同 D.甲、乙、丙都相同
    7.如图,空心圆柱体的左视图是( )

    A. B. C. D.
    8.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )

    A.4 B.3 C. D.
    9.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是(  )

    A. B. C. D.
    10.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.

    12.________.
    13.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.

    14.如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则∠BDC的度数为_____度.

    15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.

    16.抛物线y=x2﹣2x+3的对称轴是直线_____.
    三、解答题(共8题,共72分)
    17.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
    (1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
    (2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.

    18.(8分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
    他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
    19.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
    (1)求证:FH=ED;
    (2)当AE为何值时,△AEF的面积最大?

    20.(8分)解方程:2(x-3)=3x(x-3).
    21.(8分)如图,抛物线y=﹣+bx+c交x轴于点A(﹣2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF.
    (1)求抛物线解析式;
    (2)若线段DE是CD绕点D顺时针旋转90°得到,求线段DF的长;
    (3)若线段DE是CD绕点D旋转90°得到,且点E恰好在抛物线上,请求出点E的坐标.

    22.(10分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
    (1)求k的值;
    (2)求tan∠DAC的值及直线AC的解析式;
    (3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.

    23.(12分)先化简,再求值:(1﹣)÷,其中a=﹣1.
    24.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:
    ∵等边三角形ABC的边长为3,N为AC的三等分点,
    ∴AN=1。∴当点M位于点A处时,x=0,y=1。
    ①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;
    ②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。
    故选B。
    2、C
    【解析】
    试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.

    考点:1矩形;2平行线的性质.
    3、D
    【解析】
    分a>0和a<0两种情况分类讨论即可确定正确的选项
    【详解】
    当a>0时,函数y= 的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,
    当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;
    故选D.
    【点睛】
    本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.
    4、D
    【解析】
    ∵函数的图象过点A(1,m),B(4,n),
    ∴m==,n==3,
    ∴A(1,),B(4,3),
    过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
    ∴AC=4﹣1=3,
    ∵曲线段AB扫过的面积为9(图中的阴影部分),
    ∴AC•AA′=3AA′=9,
    ∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
    ∴新图象的函数表达式是.
    故选D.

    5、C
    【解析】
    当函数表达式是二次根式时,被开方数为非负数.据此可得.
    【详解】
    解:根据题意知 ,
    解得:x=0,
    故选:C.
    【点睛】
    本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
    6、B
    【解析】
    试题分析:根据分析可知,甲的主视图有2列,每列小正方数形数目分别为2,2;乙的主视图有2列,每列小正方数形数目分别为2,1;丙的主视图有2列,每列小正方数形数目分别为2,2;则主视图相同的是甲和丙.
    考点:由三视图判断几何体;简单组合体的三视图.
    7、C
    【解析】
    根据从左边看得到的图形是左视图,可得答案.
    【详解】
    从左边看是三个矩形,中间矩形的左右两边是虚线,
    故选C.
    【点睛】
    本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
    8、C
    【解析】
    设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
    【详解】
    设I的边长为x
    根据题意有
    解得或(舍去)
    故选:C.
    【点睛】
    本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.
    9、D
    【解析】
    分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    详解:∵共6个数,大于3的有3个,
    ∴P(大于3)=.
    故选D.
    点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    10、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、AC=BD.
    【解析】
    试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.
    试题解析:添加的条件应为:AC=BD.
    证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,
    ∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,
    则HG∥EF且HG=EF,
    ∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,
    ∴四边形EFGH为菱形.
    考点:1.菱形的性质;2.三角形中位线定理.
    12、1
    【解析】
    先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
    【详解】
    解:原式=2×=1.
    故答案为1.
    【点睛】
    本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.
    13、
    【解析】
    先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.
    【详解】
    ∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.
    【点睛】
    本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.
    14、1
    【解析】
    根据△EBD由△ABC旋转而成,得到△ABC≌△EBD,则BC=BD,∠EBD=∠ABC=30°,则有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化简计算即可得出.
    【详解】
    解:∵△EBD由△ABC旋转而成,
    ∴△ABC≌△EBD,
    ∴BC=BD,∠EBD=∠ABC=30°,
    ∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,
    ∴;
    故答案为:1.
    【点睛】
    此题考查旋转的性质,即图形旋转后与原图形全等.
    15、60°
    【解析】
    试题解析:∵∠ACB=90°,∠ABC=30°,
    ∴∠A=90°-30°=60°,
    ∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
    ∴AC=A′C,
    ∴△A′AC是等边三角形,
    ∴∠ACA′=60°,
    ∴旋转角为60°.
    故答案为60°.
    16、x=1
    【解析】
    把解析式化为顶点式可求得答案.
    【详解】
    解:∵y=x2-2x+3=(x-1)2+2,
    ∴对称轴是直线x=1,
    故答案为x=1.
    【点睛】
    本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).

    三、解答题(共8题,共72分)
    17、(1);(2)
    【解析】
    (1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.
    【详解】
    (1);
    (2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下:

    弟弟
    姐姐
    A
    B
    C
    D
    A

    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)

    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)

    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)

    由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).
    ∴P(姐姐抽到A佩奇,弟弟抽到B乔治)
    【点睛】
    本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.
    18、(1)详见解析;(2)详见解析;(3)
    【解析】
    (1)利用等腰三角形的性质和三角形内角和即可得出结论;
    (2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
    (3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
    【详解】
    (1)∵AD=BD,
    ∴∠B=∠BAD,
    ∵AD=CD,
    ∴∠C=∠CAD,
    在△ABC中,∠B+∠C+∠BAC=180°,
    ∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
    ∴∠B+∠C=90°,
    ∴∠BAC=90°,
    (2)如图②,连接与,交点为,连接

    四边形是矩形







    (3)如图3,过点做于点

    四边形是矩形

    是等边三角形

    由(2)知,


    在中,




    【点睛】
    此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.
    19、(1)证明见解析;(2)AE=2时,△AEF的面积最大.
    【解析】
    (1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;
    (2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.
    【详解】
    (1)证明:∵四边形CEFG是正方形,∴CE=EF.
    ∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,
    ∴∠FEH=∠DCE.
    在△FEH和△ECD中,
    ,
    ∴△FEH≌△ECD,
    ∴FH=ED.
    (2)解:设AE=a,则ED=FH=4-a,
    ∴S△AEF=AE·FH=a(4-a)=- (a-2)2+2,
    ∴当AE=2时,△AEF的面积最大.
    【点睛】
    本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.
    20、.
    【解析】
    先进行移项,在利用因式分解法即可求出答案.
    【详解】

    移项得:,
    整理得:,
    或,
    解得:或.
    【点睛】
    本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.
    21、 (1) 抛物线解析式为y=﹣;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2(﹣ ,﹣)或E3( ,﹣)或E4(,﹣).
    【解析】
    (1)将点A、C坐标代入抛物线解析式求解可得;
    (2)证△COD≌△DHE得DH=OC,由CF⊥FH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;
    (3)设点D的坐标为(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案.
    【详解】
    (1)∵抛物线y=﹣+bx+c交x轴于点A(﹣2,0)、C(0,3),∴,解得:,∴抛物线解析式为y=﹣+x+3;
    (2)如图1.
    ∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.
    又∵DC=DE,∴△COD≌△DHE,∴DH=OC.
    又∵CF⊥FH,∴四边形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;

    (3)如图2,设点D的坐标为(t,0).
    ∵点E恰好在抛物线上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分两种情况讨论:
    ①当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以点E的坐标E1(4,1)或E2(﹣,﹣);
    ②当CD绕点D逆时针旋转时,点E的坐标为(t﹣3,﹣t),代入抛物线y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故点E的坐标E3(,﹣)或E4(,﹣);

    综上所述:点E的坐标为E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.
    22、(1);(2),;(3)
    【解析】
    试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;
    (2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;
    (3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.
    试题解析:(1)把A(2,1)代入y=,得k=2×1=2;
    (2)作BH⊥AD于H,如图1,
    把B(1,a)代入反比例函数解析式y=,得a=2,
    ∴B点坐标为(1,2),
    ∴AH=2﹣1,BH=2﹣1,
    ∴△ABH为等腰直角三角形,∴∠BAH=45°,
    ∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,
    ∴tan∠DAC=tan30°=;
    ∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,
    ∴CD=2,∴OC=1,
    ∴C点坐标为(0,﹣1),
    设直线AC的解析式为y=kx+b,
    把A(2,1)、C(0,﹣1)代入得 ,解得 ,
    ∴直线AC的解析式为y=x﹣1;
    (3)设M点坐标为(t,)(0<t<2),
    ∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t, t﹣1),
    ∴MN=﹣(t﹣1)=﹣t+1,
    ∴S△CMN=•t•(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),
    ∵a=﹣<0,∴当t=时,S有最大值,最大值为.

    23、原式==﹣2.
    【解析】
    分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.
    详解:原式=
    =
    =,
    当a=﹣1时,
    原式==﹣2.
    点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
    24、 (1);(2)m=﹣.
    【解析】
    (1)根据已知和根的判别式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;
    (2)根据根与系数的关系得出x1+x2=﹣2,x1•x2=2m,把x1+xx12+x22﹣x1x2=8变形为(x1+x2)2﹣3x1x2=8,代入求出即可.
    【详解】
    (1)∵关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,
    ∴△=22﹣4×1×2m=4﹣8m>0,
    解得:
    即m的取值范围是
    (2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,
    ∴x1+x2=﹣2,x1•x2=2m,
    ∵x12+x22﹣x1x2=8,
    ∴(x1+x2)2﹣3x1x2=8,
    ∴(﹣2)2﹣3×2m=8,
    解得:
    【点睛】
    本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键.

    相关试卷

    2022年商洛市重点中学中考考前最后一卷数学试卷含解析:

    这是一份2022年商洛市重点中学中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。

    2022年潍坊市重点中学中考考前最后一卷数学试卷含解析:

    这是一份2022年潍坊市重点中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了如图所示,下列各式计算正确的是,下列计算正确的是等内容,欢迎下载使用。

    2022年汕头市重点中学中考考前最后一卷数学试卷含解析:

    这是一份2022年汕头市重点中学中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map