搜索
    上传资料 赚现金
    英语朗读宝

    云南省丽江市华坪县2022年中考数学猜题卷含解析

    云南省丽江市华坪县2022年中考数学猜题卷含解析第1页
    云南省丽江市华坪县2022年中考数学猜题卷含解析第2页
    云南省丽江市华坪县2022年中考数学猜题卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    云南省丽江市华坪县2022年中考数学猜题卷含解析

    展开

    这是一份云南省丽江市华坪县2022年中考数学猜题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一元一次不等式2,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为(  )

    A.4 B.2 C.2 D.
    2.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )

    A.1个 B.2个 C.3个 D.4个
    3.如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    4.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,所得直线的解析式为(  )
    A.y=x+1 B.y=x-1 C.y=x D.y=x-2
    5.滴滴快车是一种便捷的出行工具,计价规则如下表:
    计费项目

    里程费

    时长费

    远途费

    单价

    1.8元/公里

    0.3元/分钟

    0.8元/公里

    注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.

    小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
    A.10分钟 B.13分钟 C.15分钟 D.19分钟
    6.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为(  )
    A. B. C. D.
    7.下列运算正确的是(  )
    A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
    8.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为(  )

    A.100° B.105° C.110° D.115°
    9.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是(  )
    A. B. C. D.
    10.抛物线经过第一、三、四象限,则抛物线的顶点必在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    二、填空题(共7小题,每小题3分,满分21分)
    11.化简:①=_____;②=_____;③=_____.
    12.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.

    13.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=_____.
    14.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.

    15.若﹣4xay+x2yb=﹣3x2y,则a+b=_____.
    16.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
    17.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.

    三、解答题(共7小题,满分69分)
    18.(10分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,,)

    19.(5分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:

    根据图中提供的信息,解答下列问题:
    (1)补全频数分布直方图
    (2)求扇形统计图中m的值和E组对应的圆心角度数
    (3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数
    20.(8分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
    (1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
    (2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.

    21.(10分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.
    (1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;
    (2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
    (3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.

    22.(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
    根据图中信息求出m=   ,n=   ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
    23.(12分)(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.
    24.(14分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

    C
    D
    总计/t
    A


    200
    B
    x

    300
    总计/t
    240
    260
    500
    (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求
    总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.
    【详解】作BD⊥AC于D,如图,
    ∵△ABC为等腰直角三角形,
    ∴AC=AB=2,
    ∴BD=AD=CD=,
    ∵AC⊥x轴,
    ∴C(,2),
    把C(,2)代入y=得k=×2=4,
    故选A.

    【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.
    2、B
    【解析】
    解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
    故选B.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
    3、A
    【解析】
    画出从正面看到的图形即可得到它的主视图.
    【详解】
    这个几何体的主视图为:

    故选:A.
    【点睛】
    本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
    4、A
    【解析】向左平移一个单位长度后解析式为:y=x+1.
    故选A.
    点睛:掌握一次函数的平移.
    5、D
    【解析】
    设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.
    【详解】
    设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
    1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),
    10.8+0.3x=16.5+0.3y,
    0.3(x-y)=5.7,
    x-y=19,
    故答案为D.
    【点睛】
    本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.
    6、B
    【解析】
    按照解一元一次不等式的步骤求解即可.
    【详解】
    去括号,得2+2x>1+3x;移项合并同类项,得x-1
    【解析】
    首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
    【详解】
    解:,
    ①+②得1x+1y=1m+4,
    则x+y=m+1,
    根据题意得m+1>0,
    解得m>﹣1.
    故答案是:m>﹣1.
    【点睛】
    本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
    17、1
    【解析】
    连接BD.根据圆周角定理可得.
    【详解】
    解:如图,连接BD.

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠B=90°﹣∠DAB=1°,
    ∴∠ACD=∠B=1°,
    故答案为1.
    【点睛】
    考核知识点:圆周角定理.理解定义是关键.

    三、解答题(共7小题,满分69分)
    18、6.58米
    【解析】
    试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.
    试题解析:过A点作AE⊥CD于E. 在Rt△ABE中,∠ABE=62°. ∴AE=AB•sin62°=25×0.88=22米,
    BE=AB•cos62°=25×0.47=11.75米, 在Rt△ADE中,∠ADB=50°, ∴DE==18米,
    ∴DB=DE﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.

    考点:解直角三角形的应用-坡度坡角问题.
    19、略;m=40, 1.4°;870人.
    【解析】
    试题分析:根据A组的人数和比例得出总人数,然后得出D组的人数,补全条形统计图;根据C组的人数和总人数得出m的值,根据E组的人数求出E的百分比,然后计算圆心角的度数;根据D组合E组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数.
    试题解析:(1)补全频数分布直方图,如图所示.

    (2)∵10÷10%=100 ∴40÷100=40% ∴m=40
    ∵4÷100=4% ∴“E”组对应的圆心角度数=4%×360°=1.4°
    (3)3000×(25%+4%)=870(人).
    答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.
    考点:统计图.
    20、(1)证明见解析;(1)2
    【解析】
    分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
    (1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
    详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
    ∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
    ∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
    (1)∵BE=1,∴BC=4,由勾股定理得:AB===2.

    点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
    21、y=x﹣5
    【解析】
    分析:(1)根据定义,直接变形得到伴生一次函数的解析式;
    (2)求出顶点,代入伴生函数解析式即可求解;
    (3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.
    详解:(1)∵二次函数y=(x﹣1)2﹣4,
    ∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,
    故答案为y=x﹣5;
    (2)∵二次函数y=(x﹣1)2﹣4,
    ∴顶点坐标为(1,﹣4),
    ∵二次函数y=(x﹣1)2﹣4,
    ∴其伴生一次函数的表达式为y=x﹣5,
    ∴当x=1时,y=1﹣5=﹣4,
    ∴(1,﹣4)在直线y=x﹣5上,
    即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
    (3)∵二次函数y=m(x﹣1)2﹣4m,
    ∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,
    ∵P点的横坐标为n,(n>2),
    ∴P的纵坐标为m(n﹣1)2﹣4m,
    即:P(n,m(n﹣1)2﹣4m),
    ∵PQ∥x轴,
    ∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),
    ∴PQ=(n﹣1)2+1﹣n,
    ∵线段PQ的长为,
    ∴(n﹣1)2+1﹣n=,
    ∴n=.
    点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.
    22、(1)100、35;(2)补图见解析;(3)800人;(4)
    【解析】
    分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;
    (2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;
    (3)总人数乘以样本中微信人数所占百分比可得答案;
    (4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.
    详解:(1)∵被调查的总人数m=10÷10%=100人,
    ∴支付宝的人数所占百分比n%=×100%=35%,即n=35,
    (2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,
    补全图形如下:

    (3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;
    (4)列表如下:

    共有12种情况,这两位同学最认可的新生事物不一样的有10种,
    所以这两位同学最认可的新生事物不一样的概率为.
    点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    23、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.
    24、(1)见解析;(2)w=2x+9200,方案见解析;(3)0

    相关试卷

    云南省曲靖市实验中学2021-2022学年中考数学猜题卷含解析:

    这是一份云南省曲靖市实验中学2021-2022学年中考数学猜题卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为等内容,欢迎下载使用。

    2022年黄冈中考数学猜题卷含解析:

    这是一份2022年黄冈中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,错误的是,已知一次函数y=等内容,欢迎下载使用。

    2022届云南省开远市市级名校中考数学猜题卷含解析:

    这是一份2022届云南省开远市市级名校中考数学猜题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,分式方程的解为,若关于x的一元二次方程等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map