云南省临沧市镇康县2021-2022学年中考数学适应性模拟试题含解析
展开
这是一份云南省临沧市镇康县2021-2022学年中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,1﹣的相反数是,下列判断错误的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
2.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )
A. B.
C. D.
3.若a=,则实数a在数轴上对应的点的大致位置是( )
A.点E B.点F C.点G D.点H
4.在代数式 中,m的取值范围是( )
A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠0
5.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为( )
A.5 B.4 C.7 D.5
6.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为( )
A.40° B.45° C.50° D.55°
7.1﹣的相反数是( )
A.1﹣ B.﹣1 C. D.﹣1
8.下列判断错误的是( )
A.对角线相等的四边形是矩形
B.对角线相互垂直平分的四边形是菱形
C.对角线相互垂直且相等的平行四边形是正方形
D.对角线相互平分的四边形是平行四边形
9.两个一次函数,,它们在同一直角坐标系中的图象大致是( )
A. B. C. D.
10.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.因式分解:x3﹣4x=_____.
12.如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是_____.
13.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.
14.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .
15.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.
16.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.
三、解答题(共8题,共72分)
17.(8分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.
请根据以上的信息,回答下列问题:
(1)补全扇形统计图和条形统计图;
(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);
(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
18.(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.
(1)求从中随机抽取出一个黑球的概率是多少?
(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.
19.(8分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.
20.(8分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.
(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;
(II)如图②,当α=60°时,求点C′的坐标;
(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).
21.(8分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求一次函数y=kx+b和y=的表达式;
(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;
(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)
22.(10分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
23.(12分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
∵ ∴
(思考)在上述问题中,h1,h1与h的数量关系为: .
(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
24.已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
(1)求证:无论实数m取何值,方程总有两个实数根;
(2)若方程两个根均为正整数,求负整数m的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
2、B
【解析】
试题解析:∵转盘被等分成6个扇形区域,
而黄色区域占其中的一个,
∴指针指向黄色区域的概率=.
故选A.
考点:几何概率.
3、C
【解析】
根据被开方数越大算术平方根越大,可得答案.
【详解】
解:∵<<,
∴3<<4,
∵a=,
∴3<a<4,
故选:C.
【点睛】
本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<<4是解题关键.
4、D
【解析】
根据二次根式有意义的条件即可求出答案.
【详解】
由题意可知:
解得:m≤3且m≠0
故选D.
【点睛】
本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.
5、C
【解析】
连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.
【详解】
解:连接AE,
∵AC=3,cos∠CAB=,
∴AB=3AC=9,
由勾股定理得,BC==6,
∠ACB=90°,点D为AB的中点,
∴CD=AB=,
S△ABC=×3×6=9,
∵点D为AB的中点,
∴S△ACD=S△ABC=,
由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,
则×CD×AE=9,
解得,AE=4,
∴AF=2,
由勾股定理得,DF==,
∵AF=FE,AD=DB,
∴BE=2DF=7,
故选C.
【点睛】
本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
6、C
【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.
【详解】
∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=∠BOC=50°
故选:C.
【点睛】
考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.
7、B
【解析】
根据相反数的的定义解答即可.
【详解】
根据a的相反数为-a即可得,1﹣的相反数是﹣1.
故选B.
【点睛】
本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.
8、A
【解析】
利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:、对角线相等的四边形是矩形,错误;
、对角线相互垂直平分的四边形是菱形,正确;
、对角线相互垂直且相等的平行四边形是正方形,正确;
、对角线相互平分的四边形是平行四边形,正确;
故选:.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
9、B
【解析】
根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.
【详解】
解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,
所以,a、b异号,
所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,
B选项符合,
D选项,a、b都经过第二、四象限,
所以,两直线都与y轴负半轴相交,不符合.
故选:B.
【点睛】
本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
10、D
【解析】
试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x(x+2)(x﹣2)
【解析】
试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用.
12、x<﹣2或0<x<2
【解析】
仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.
【详解】
解:如图,
结合图象可得:
①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.
综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.
故答案为x<﹣2或0<x<2.
【点睛】
本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.
13、1或5.
【解析】
小正方形的高不变,根据面积即可求出小正方形平移的距离.
【详解】
解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,
①如图,小正方形平移距离为1厘米;
②如图,小正方形平移距离为4+1=5厘米.
故答案为1或5,
【点睛】
此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.
14、y=x-3
【解析】
【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.
【详解】当x=2时,y==3,∴A(2,3),B(2,0),
∵y=kx过点 A(2,3),
∴3=2k,∴k=,
∴y=x,
∵直线y=x平移后经过点B,
∴设平移后的解析式为y=x+b,
则有0=3+b,
解得:b=-3,
∴平移后的解析式为:y=x-3,
故答案为:y=x-3.
【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.
15、1
【解析】
原方程为3x2−6x+1=0,二次项系数化为1,得x2−2x=−,
即x2−2x+1=−+1,所以(x−1)2= .
故答案为:1,.
16、1
【解析】
试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.
考点:一元二次方程的解.
三、解答题(共8题,共72分)
17、(1)见解析;(2)A;(3)800人.
【解析】
(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;
(2)根据众数的定义即可求解;
(3)利用总人数2000乘以对应的百分比即可求解.
【详解】
解:(1)∵被调查的学生人数为24÷40%=60人,
∴D类别人数为60﹣(24+12+15+3)=6人,
则D类别的百分比为×100%=10%,
补全图形如下:
(2)所抽查学生参加社会实践活动天数的众数是A,
故答案为:A;
(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
18、(1).(2).
【解析】
试题分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式.
试题解析:(1)取出一个黑球的概率
(2)取出一个白球的概率
与的函数关系式为:.
考点:概率
19、(1)详见解析;(2)6
【解析】
(1)连接CD,证明即可得到结论;
(2)设圆O的半径为r,在Rt△BDO中,运用勾股定理即可求出结论.
【详解】
(1)证明:连接CD,
∵
∴
∵
∴
.
(2)设圆O的半径为,,
设.
【点睛】
本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.
20、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②
C′(,﹣)
【解析】
(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;
(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;
(III)分两种情形分别求解即可解决问题;
【详解】
解:(I)如图①,
∵A(8,0),B(0,4),
∴OB=4,OA=8,
∵AC=OC=AC′=4,
∴当OB∥AC′,四边形OBC′A是平行四边形,
∵∠AOB=90°,
∴四边形OBC′A是矩形,
∴∠AC′B=90°,∵∠AC′D′=90°,
∴B、C′、D′共线,
∴BD′∥OA,
∵AC=CO, BD=AD,
∴CD=C′D′=OB=2,
∴D′(10,4),
根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.
综上所述,满足条件的点D坐标(10,4)或(6,4).
(II)如图②,当α=60°时,作C′K⊥AC于K.
在Rt△AC′K中,∵∠KAC′=60°,AC′=4,
∴AK=2,C′K=2,
∴OK=6,
∴C′(6,2).
(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).
②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,
∴OF=FC′,设OF=FC′=x,
在Rt△ABC′中,BC′==8,
在RT△BOF中,OB=4,OF=x,BF=8﹣x,
∴(8﹣x)2=42+x2,
解得x=3,
∴OF=FC′=3,BF=5,作C′K⊥OA于K,
∵OB∥KC′,
∴==,
∴==,
∴KC′=,KF=,
∴OK=,
∴C′(,﹣).
【点睛】
本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
21、(1),;(2)点C的坐标为或;(3)2.
【解析】
试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合△ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EM∥FN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S.
试题解析:
(1)∵点A(4,3)在反比例函数y=的图象上,
∴a=4×3=12,
∴反比例函数解析式为y=;
∵OA==1,OA=OB,点B在y轴负半轴上,
∴点B(0,﹣1).
把点A(4,3)、B(0,﹣1)代入y=kx+b中,
得: ,解得: ,
∴一次函数的解析式为y=2x﹣1.
(2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示.
令y=2x﹣1中y=0,则x=,
∴D(,0),
∴S△ABC=CD•(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,
解得:m=或m=.
故当△ABC的面积是8时,点C的坐标为(,0)或(,0).
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.
令y=中x=1,则y=12,
∴E(1,12),;
令y=中x=4,则y=3,
∴F(4,3),
∵EM∥FN,且EM=FN,
∴四边形EMNF为平行四边形,
∴S=EM•(yE﹣yF)=3×(12﹣3)=2.
C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积.
故答案为2.
【点睛】运用了反比例函数图象上点的坐标特征、待定系数法求函数解析式、三角形的面积以及平行四边形的面积,解题的关键是:(1)利用待定系数法求出函数解析式;(2)找出关于m的含绝对值符号的一元一次方程;(3)求出平行四边形EMNF的面积.本题属于中档题,难度不小,解决(3)时,巧妙的借助平行四边的面积公式求出C1平移至C2处所扫过的面积,此处要注意数形结合的重要性.
22、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
【解析】
试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.
试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),
∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
考点:(1)正方形;(2)全等三角形的判定与性质.
23、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
【解析】
思考:根据等腰三角形的性质,把代数式化简可得.
探究:当点M在BC延长线上时,连接,可得,化简可得.
应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
【详解】
思考
即
h1+h1=h.
探究
h1-h1=h.
理由.连接,
∵
∴
∴h1-h1=h.
应用
在中,令x=0得y=3;
令y=0得x=-4,则:
A(-4,0),B(0,3)
同理求得C(1,0),
,
又因为AC=5,
所以AB=AC,即△ABC为等腰三角形.
①当点M在BC边上时,
由h1+h1=h得:
1+My=OB,My=3-1=1,
把它代入y=-3x+3中求得:
,
∴;
②当点M在CB延长线上时,
由h1-h1=h得:
My-1=OB,My=3+1=4,
把它代入y=-3x+3中求得:
,
∴,
综上,所求点M的坐标为或.
【点睛】
本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
24、 (1)见解析;(2) m=-1.
【解析】
(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
【详解】
(1)∵△=(m+3)2﹣4(m+2)
=(m+1)2
∴无论m取何值,(m+1)2恒大于等于1
∴原方程总有两个实数根
(2)原方程可化为:(x-1)(x-m-2)=1
∴x1=1, x2=m+2
∵方程两个根均为正整数,且m为负整数
∴m=-1.
【点睛】
本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
相关试卷
这是一份云南省镇康县市级名校2021-2022学年中考数学四模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,函数的图像位于,下列各式正确的是等内容,欢迎下载使用。
这是一份云南省师宗县2021-2022学年中考数学适应性模拟试题含解析,共19页。试卷主要包含了二元一次方程组的解是,如果,则a的取值范围是等内容,欢迎下载使用。
这是一份云南省临沧市凤庆县重点名校2021-2022学年中考数学适应性模拟试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。