终身会员
搜索
    上传资料 赚现金

    长治市重点中学2021-2022学年中考数学模拟试题含解析

    立即下载
    加入资料篮
    长治市重点中学2021-2022学年中考数学模拟试题含解析第1页
    长治市重点中学2021-2022学年中考数学模拟试题含解析第2页
    长治市重点中学2021-2022学年中考数学模拟试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    长治市重点中学2021-2022学年中考数学模拟试题含解析

    展开

    这是一份长治市重点中学2021-2022学年中考数学模拟试题含解析,共22页。试卷主要包含了答题时请按要求用笔,一元二次方程的根是,下列说法正确的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    2.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是  
    A. B. C. D.
    3.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为(  )
    A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<4
    4.下列运算中,正确的是 ( )
    A.x2+5x2=6x4 B.x3 C. D.
    5.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为(  )

    A.16+16 B.16+8 C.24+16 D.4+4
    6.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为(  )

    A.12m B.13.5m C.15m D.16.5m
    7.一元二次方程的根是( )
    A. B.
    C. D.
    8.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )

    A. B. C. D.
    9.下列说法正确的是( )
    A.负数没有倒数 B.﹣1的倒数是﹣1
    C.任何有理数都有倒数 D.正数的倒数比自身小
    10.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )

    A.AB=AD B.AC平分∠BCD
    C.AB=BD D.△BEC≌△DEC
    11.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=10,BC=15,MN=3,则AC的长是(  )

    A.12 B.14 C.16 D.18
    12.如图,在中,E为边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的大小为( )

    A.20° B.30° C.36° D.40°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算:(2018﹣π)0=_____.
    14.把多项式x3﹣25x分解因式的结果是_____
    15.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)

    16.满足的整数x的值是_____.
    17.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
    ①四边形ACBE是菱形;
    ②∠ACD=∠BAE;
    ③AF:BE=2:1;
    ④S四边形AFOE:S△COD=2:1.
    其中正确的结论有_____.(填写所有正确结论的序号)

    18.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(11分)阅读资料:
    如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B两点间的距离为AB=.
    我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x﹣0|1+|y﹣0|1,当⊙O的半径为r时,⊙O的方程可写为:x1+y1=r1.
    问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为 .
    综合应用:
    如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
    ①证明AB是⊙P的切点;
    ②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.

    20.(6分)如图,在中,,为边上的中线,于点E.
    求证:;若,,求线段的长.
    21.(6分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.

    22.(8分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。

    23.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.

    24.(10分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
    (1)求直线AB的函数关系式;
    (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
    (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由

    25.(10分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.
    请填空完成下列证明.
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则 CD=AB=AD (   ).
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形.
    ∴∠A=   °.
    ∴∠B=90°﹣∠A=30°.

    26.(12分)如图,在锐角△ABC中,小明进行了如下的尺规作图:
    ①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;
    ②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的   ;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.

    27.(12分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
    该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
    该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    2、B
    【解析】
    解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
    点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
    3、C
    【解析】
    先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
    【详解】
    解:∵一个正方形花坛的面积为,其边长为,


    则a的取值范围为:.
    故选:C.
    【点睛】
    此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
    4、C
    【解析】
    分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.
    详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;
    D.,本项错误.故选C.
    点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.
    5、A
    【解析】
    分析出此三棱柱的立体图像即可得出答案.
    【详解】
    由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=×4=,所以侧面积之和为×2+4×4= 16+16,所以答案选择A项.
    【点睛】
    本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.
    6、D
    【解析】
    利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.
    【详解】
    ∵∠DEF=∠BCD=90°,∠D=∠D,
    ∴△DEF∽△DCB,
    ∴,
    ∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,
    ∴由勾股定理求得DE=40cm,
    ∴,
    ∴BC=15米,
    ∴AB=AC+BC=1.5+15=16.5(米).
    故答案为16.5m.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
    7、D
    【解析】
    试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.
    考点:一元二次方程的解法——因式分解法——提公因式法.
    8、D
    【解析】

    分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.
    详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),
    ∴AC=-1-(-1)=3,
    ∵曲线段AB扫过的面积为9(图中的阴影部分),
    ∴矩形ACD A′的面积等于9,
    ∴AC·AA′=3AA′=9,
    ∴AA′=3,
    ∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,
    ∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.
    故选D.

    点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.
    9、B
    【解析】
    根据倒数的定义解答即可.
    【详解】
    A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.
    【点睛】
    本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.
    10、C
    【解析】
    解:∵AC垂直平分BD,∴AB=AD,BC=CD,
    ∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
    在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
    ∴Rt△BCE≌Rt△DCE(HL).
    ∴选项ABD都一定成立.
    故选C.
    11、C
    【解析】

    延长线段BN交AC于E.
    ∵AN平分∠BAC,∴∠BAN=∠EAN.
    在△ABN与△AEN中,
    ∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,
    ∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.
    又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,
    ∴AC=AE+CE=10+6=16.故选C.
    12、C
    【解析】
    由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴,
    由折叠的性质得:,,
    ∴,,
    ∴;
    故选C.
    【点睛】
    本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    根据零指数幂:a0=1(a≠0)可得答案.
    【详解】
    原式=1,
    故答案为:1.
    【点睛】
    此题主要考查了零次幂,关键是掌握计算公式.
    14、x(x+5)(x﹣5).
    【解析】
    分析:首先提取公因式x,再利用平方差公式分解因式即可.
    详解:x3-25x
    =x(x2-25)
    =x(x+5)(x-5).
    故答案为x(x+5)(x-5).
    点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    15、①②③⑤
    【解析】
    根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
    【详解】
    由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
    ∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,

    ∴2a+b>0,
    故③正确,
    由图象可得顶点纵坐标小于﹣2,则④错误,
    当x=1时,y=a+b+c<0,故⑥错误
    故答案为:①②③⑤
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
    线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    16、3,1
    【解析】
    直接得出2<<3,1<<5,进而得出答案.
    【详解】
    解:∵2<<3,1<<5,
    ∴的整数x的值是:3,1.
    故答案为:3,1.
    【点睛】
    此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
    17、①②④.
    【解析】
    根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∵EC垂直平分AB,
    ∴OA=OB=AB=DC,CD⊥CE,
    ∵OA∥DC,
    ∴=,
    ∴AE=AD,OE=OC,
    ∵OA=OB,OE=OC,
    ∴四边形ACBE是平行四边形,
    ∵AB⊥EC,
    ∴四边形ACBE是菱形,故①正确,
    ∵∠DCE=90°,DA=AE,
    ∴AC=AD=AE,
    ∴∠ACD=∠ADC=∠BAE,故②正确,
    ∵OA∥CD,
    ∴,
    ∴,故③错误,
    设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,
    ∴四边形AFOE的面积为4a,△ODC的面积为6a
    ∴S四边形AFOE:S△COD=2:1.故④正确.

    故答案是:①②④.
    【点睛】
    此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
    18、﹣1
    【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
    【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
    整理得k2+1k=0,解得k1=0,k2=﹣1,
    因为k≠0,
    所以k的值为﹣1.
    故答案为:﹣1.
    【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、问题拓展:(x﹣a)1+(y﹣b)1=r1综合应用:①见解析②点Q的坐标为(4,3),方程为(x﹣4)1+(y﹣3)1=15.
    【解析】
    试题分析:问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;
    综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;
    ②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.
    试题解析:解:问题拓展:设A(x,y)为⊙P上任意一点,
    ∵P(a,b),半径为r,
    ∴AP1=(x﹣a)1+(y﹣b)1=r1.
    故答案为(x﹣a)1+(y﹣b)1=r1;
    综合应用:
    ①∵PO=PA,PD⊥OA,
    ∴∠OPD=∠APD.
    在△POB和△PAB中,

    ∴△POB≌△PAB,
    ∴∠POB=∠PAB.
    ∵⊙P与x轴相切于原点O,
    ∴∠POB=90°,
    ∴∠PAB=90°,
    ∴AB是⊙P的切线;
    ②存在到四点O,P,A,B距离都相等的点Q.
    当点Q在线段BP中点时,
    ∵∠POB=∠PAB=90°,
    ∴QO=QP=BQ=AQ.
    此时点Q到四点O,P,A,B距离都相等.
    ∵∠POB=90°,OA⊥PB,
    ∴∠OBP=90°﹣∠DOB=∠POA,
    ∴tan∠OBP==tan∠POA=.
    ∵P点坐标为(0,6),
    ∴OP=6,OB=OP=3.
    过点Q作QH⊥OB于H,如图3,
    则有∠QHB=∠POB=90°,
    ∴QH∥PO,
    ∴△BHQ∽△BOP,
    ∴===,
    ∴QH=OP=3,BH=OB=4,
    ∴OH=3﹣4=4,
    ∴点Q的坐标为(4,3),
    ∴OQ==5,
    ∴以Q为圆心,以OQ为半径的⊙O的方程为(x﹣4)1+(y﹣3)1=15.

    考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义.
    20、(1)见解析;(2).
    【解析】
    对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;
    对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.
    【详解】
    解:(1)证明:∵,
    ∴.
    又∵为边上的中线,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)∵,∴.
    在中,根据勾股定理,得.
    由(1)得,∴,
    即,
    ∴.
    【点睛】
    此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.
    21、还需要航行的距离的长为20.4海里.
    【解析】
    分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.
    详解:由题知:,,.
    在中,,,(海里).
    在中,,,(海里).
    答:还需要航行的距离的长为20.4海里.
    点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.
    22、(1)作图见解析;(2)1
    【解析】
    (1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
    (2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
    【详解】
    (1)解:如图所示:

    (2)解:∵平行四边形ABCD的周长为10
    ∴AB+AD=5
    ∵AD//BC
    ∴∠AEB=∠EBC
    又∵BE平分∠ABC
    ∴∠ABE=∠EBC
    ∴∠AEB=∠ABE
    ∴AB=AE=2
    ∴ED=AD-AE=3-2=1
    【点睛】
    此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
    23、见解析
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB∥DC,
    ∴∠EAO=∠FCO,
    在△AEO和△CFO中,
    ∴△AEO≌△CFO(ASA),
    ∴OE=OF.
    【点睛】
    本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.
    24、(1);(2) (0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.
    【解析】
    (1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.
    (2)用t表示P、M、N 的坐标,由等式得到函数关系式.
    (3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.
    【详解】
    解:(1)x=0时,y=1,
    ∴点A的坐标为:(0,1),
    ∵BC⊥x轴,垂足为点C(3,0),
    ∴点B的横坐标为3,
    当x=3时,y=,
    ∴点B的坐标为(3,),
    设直线AB的函数关系式为y=kx+b, ,
    解得,,
    则直线AB的函数关系式
    (2)当x=t时,y=t+1,
    ∴点M的坐标为(t,t+1),
    当x=t时,
    ∴点N的坐标为
    (0≤t≤3);
    (3)若四边形BCMN为平行四边形,则有MN=BC,
    ∴,
    解得t1=1,t2=2,
    ∴当t=1或2时,四边形BCMN为平行四边形,
    ①当t=1时,MP=,PC=2,
    ∴MC==MN,此时四边形BCMN为菱形,
    ②当t=2时,MP=2,PC=1,
    ∴MC=≠MN,此时四边形BCMN不是菱形.
    【点睛】
    本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.
    25、直角三角形斜边上的中线等于斜边的一半;1.
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.
    【详解】
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形,
    ∴∠A=1°,
    ∴∠B=90°﹣∠A=30°.
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.
    26、(1)线段AB的垂直平分线(或中垂线);(2)AC=5.
    【解析】
    (1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线
    (2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.
    【详解】
    (1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);
    故答案为线段AB的垂直平分线(或中垂线);
    (2)过点D作DF⊥AC,垂足为点F,如图,
    ∵DE是线段AB的垂直平分线,
    ∴AD=BD=7
    ∴CD=BC﹣BD=2,
    在Rt△ADF中,∵sin∠DAC=,
    ∴DF=1,
    在Rt△ADF中,AF=,
    在Rt△CDF中,CF=,
    ∴AC=AF+CF=.

    【点睛】
    本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.
    27、 (1);(2).
    【解析】
    (1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.
    【详解】
    (1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:.
    故答案为;
    (2)画树状图得:

    ∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:.
    【点睛】
    本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    贺州市重点中学2021-2022学年中考数学模拟试题含解析:

    这是一份贺州市重点中学2021-2022学年中考数学模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,在代数式 中,m的取值范围是,下列说法错误的是,下面四个几何体,-2的倒数是等内容,欢迎下载使用。

    汉中市重点中学2021-2022学年中考数学模拟试题含解析:

    这是一份汉中市重点中学2021-2022学年中考数学模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔,﹣2018的绝对值是等内容,欢迎下载使用。

    滨州市重点中学2021-2022学年中考数学模拟试题含解析:

    这是一份滨州市重点中学2021-2022学年中考数学模拟试题含解析,共23页。试卷主要包含了估计﹣2的值应该在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map