搜索
    上传资料 赚现金
    英语朗读宝

    浙江杭州经济开发区六校联考2022年中考数学全真模拟试卷含解析

    浙江杭州经济开发区六校联考2022年中考数学全真模拟试卷含解析第1页
    浙江杭州经济开发区六校联考2022年中考数学全真模拟试卷含解析第2页
    浙江杭州经济开发区六校联考2022年中考数学全真模拟试卷含解析第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江杭州经济开发区六校联考2022年中考数学全真模拟试卷含解析

    展开

    这是一份浙江杭州经济开发区六校联考2022年中考数学全真模拟试卷含解析,共16页。试卷主要包含了答题时请按要求用笔,-的立方根是,下列调查中,最适合采用全面调查,尺规作图要求等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为(  )
    A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
    2.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是(  )
    A.0 B. C.2+ D.2﹣
    3.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )

    A.O1 B.O2 C.O3 D.O4
    4.计算的值( )
    A.1 B. C.3 D.
    5.解分式方程时,去分母后变形为
    A. B.
    C. D.
    6.如图所示图形中,不是正方体的展开图的是(  )
    A. B.
    C. D.
    7.-的立方根是( )
    A.-8 B.-4 C.-2 D.不存在
    8.下列调查中,最适合采用全面调查(普查)的是(  )
    A.对我市中学生每周课外阅读时间情况的调查
    B.对我市市民知晓“礼让行人”交通新规情况的调查
    C.对我市中学生观看电影《厉害了,我的国》情况的调查
    D.对我国首艘国产航母002型各零部件质量情况的调查
    9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
    Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
    如图是按上述要求排乱顺序的尺规作图:

    则正确的配对是(  )
    A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
    C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
    10.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )

    A.20 B.27 C.35 D.40
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
    12.函数y= 中,自变量x的取值范围是 _____.
    13.若与是同类项,则的立方根是 .
    14.已知关于 x 的函数 y=(m﹣1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.
    15.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为_____.

    16.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.
    17.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________.

    三、解答题(共7小题,满分69分)
    18.(10分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
    19.(5分)在平面直角坐标系 xOy 中,抛物线 y=ax2﹣4ax+3a﹣2(a≠0)与 x轴交于 A,B 两(点 A 在点 B 左侧).
    (1)当抛物线过原点时,求实数 a 的值;
    (2)①求抛物线的对称轴;
    ②求抛物线的顶点的纵坐标(用含 a 的代数式表示);
    (3)当 AB≤4 时,求实数 a 的取值范围.
    20.(8分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF
    (1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
    (2)若AB=2,AE=2,求∠BAD的大小.

    21.(10分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.求证:△ADF∽△ACG;若,求的值.

    22.(10分)已知抛物线y=ax2+(3b+1)x+b﹣3(a>0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”.
    (1)当a=2,b=1时,求该抛物线的“和谐点”;
    (2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B.
    ①求实数a的取值范围;
    ②若点A,B关于直线y=﹣x﹣(+1)对称,求实数b的最小值.
    23.(12分)如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,若 AB,求证:四边形 ABCD 是正方形

    24.(14分)解方程
    (1)x1﹣1x﹣1=0
    (1)(x+1)1=4(x﹣1)1.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
    故选D
    点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
    2、C
    【解析】
    把x的值代入代数式,运用完全平方公式和平方差公式计算即可
    【详解】
    解:当x=2﹣时,
    (7+4)x2+(2+)x+
    =(7+4)(2﹣)2+(2+)(2﹣)+
    =(7+4)(7-4)+1+
    =49-48+1+
    =2+
    故选:C.
    【点睛】
    此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.
    3、A
    【解析】
    试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.

    考点:平面直角坐标系.
    4、A
    【解析】
    根据有理数的加法法则进行计算即可.
    【详解】

    故选:A.
    【点睛】
    本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
    5、D
    【解析】
    试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.
    考点:解分式方程的步骤.
    6、C
    【解析】
    由平面图形的折叠及正方形的展开图结合本题选项,一一求证解题.
    【详解】
    解:A、B、D都是正方体的展开图,故选项错误;
    C、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.
    故选C.
    【点睛】
    此题考查正方形的展开图,难度不大,但是需要空间想象力才能更好的解题
    7、C
    【解析】
    分析:首先求出的值,然后根据立方根的计算法则得出答案.
    详解:∵,, ∴的立方根为-2,故选C.
    点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
    8、D
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.
    【详解】
    A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
    B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
    C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;
    D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;
    故选D.
    【点睛】
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    9、D
    【解析】
    【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
    【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
    Ⅱ、作线段的垂直平分线,观察可知图③符合;
    Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
    Ⅳ、作角的平分线,观察可知图①符合,
    所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
    故选D.
    【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
    10、B
    【解析】
    试题解析:第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,
    则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.
    故选B.
    考点:规律型:图形变化类.

    二、填空题(共7小题,每小题3分,满分21分)
    11、5.2
    【解析】
    分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
    详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
    ∴方差为:.
    点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
    12、x≠﹣.
    【解析】
    该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
    【详解】
    解:根据分式有意义的条件得:2x+3≠1
    解得:
    故答案为
    【点睛】
    本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
    13、2.
    【解析】
    试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.
    考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.
    14、1 或 0 或
    【解析】
    分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;
    当函数为二次函数时,将(0,0)代入解析式即可求出m的值.
    【详解】
    解:(1)当 m﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴
    交点坐标为(﹣ ,0);与 y 轴交点坐标(0,1).符合题意.
    (2)当 m﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,
    于是△=4﹣4(m﹣1)m>0,
    解得,(m﹣)2<,
    解得 m< 或 m> .
    将(0,0)代入解析式得,m=0,符合题意.
    (3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,
    这时:△=4﹣4(m﹣1)m=0,
    解得:m= .
    故答案为1 或 0 或.
    【点睛】
    此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.
    15、1
    【解析】
    根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得正方形ABCD的周长.
    【详解】
    ∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,
    ∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,
    ∵点B是这条抛物线上的另一点,且AB∥x轴,
    ∴点B的横坐标是﹣3,
    ∴AB=|0﹣(﹣3)|=3,
    ∴正方形ABCD的周长为:3×4=1,
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、正方形的性质,解题的关键是找出所求问题需要的条件.
    16、或
    【解析】
    解方程x2-4x+3=0得,x1=1,x2=3,
    ①当3是直角边时,∵△ABC最小的角为A,∴tanA=;
    ②当3是斜边时,根据勾股定理,∠A的邻边=,∴tanA=;
    所以tanA的值为或.
    17、3
    【解析】
    根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.
    【详解】
    解:因为点M、N分别是AB、BC的中点,
    由三角形的中位线可知:MN=AC,
    所以当AC最大为直径时,MN最大.这时∠B=90°
    又因为∠ACB=45°,AB=6 解得AC=6
    MN长的最大值是3.
    故答案为:3.

    【点睛】
    本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.

    三、解答题(共7小题,满分69分)
    18、25%
    【解析】
    首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
    【详解】
    设这两年中获奖人次的平均年增长率为x,
    根据题意得:48+48(1+x)+48(1+x)2=183,
    解得:x1==25%,x2=﹣(不符合题意,舍去).
    答:这两年中获奖人次的年平均年增长率为25%
    19、(1)a=;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a 的范围为 a<﹣2 或 a≥.
    【解析】
    (1)把原点坐标代入 y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设 A(m,1),B(n,1),利用抛物线与 x 轴的交点问题,则 m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,利用判别式的意义解得 a>1 或 a<﹣2,再利用根与系数的关系得到 m+n=4,mn= ,然后根据完全平方公式利用 n﹣m≤4 得到(m+n)2﹣4mn≤16,所以 42﹣4•≤16,接着解关于a 的不等式,最后确定a的范围.
    【详解】
    (1)把(1,1)代入 y=ax2﹣4ax+3a﹣2 得 3a﹣2=1,解得 a=;
    (2)①y=a(x﹣2)2﹣a﹣2, 抛物线的对称轴为直线 x=2;
    ②抛物线的顶点的纵坐标为﹣a﹣2;
    (3)设 A(m,1),B(n,1),
    ∵m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,
    ∴△=16a2﹣4a(3a﹣2)>1,解得 a>1 或 a<﹣2,
    ∴m+n=4,mn=, 而 n﹣m≤4,
    ∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,
    ∴42﹣4• ≤16,
    即≥1,解得 a≥或 a<1.
    ∴a 的范围为 a<﹣2 或 a≥.
    【点睛】
    本题考查了抛物线与 x 轴的交点:把求二次函数 y=ax2+bx+c(a,b,c 是常数,a≠1)与 x 轴的交点坐标问题转化为解关于 x 的一元二次方程.也考查了二次函数的性质.
    20、 (1)见解析;(2) 60°.
    【解析】
    (1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;
    (2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.
    【详解】
    解:(1)在△AEB和△AEF中,

    ∴△AEB≌△AEF,
    ∴∠EAB=∠EAF,
    ∵AD∥BC,
    ∴∠EAF=∠AEB=∠EAB,
    ∴BE=AB=AF.
    ∵AF∥BE,
    ∴四边形ABEF是平行四边形,
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)连结BF,交AE于G.
    ∵AB=AF=2,
    ∴GA=AE=×2=,
    在Rt△AGB中,cos∠BAE==,
    ∴∠BAG=30°,
    ∴∠BAF=2∠BAG=60°,
    【点睛】
    本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.
    21、 (1)证明见解析;(2)1.
    【解析】
    (1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.
    (2)利用相似三角形的性质得到,由此即可证明.
    【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,
    ∵,∴△ADF∽△ACG.
    (2)解:∵△ADF∽△ACG,∴,
    又∵,∴,
    ∴1.
    22、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是
    【解析】
    (1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;
    (1)抛物线上恒有两个不同的“和谐点”A、B.则关于m的方程m=am1+(3b+1)m+b-3的根的判别式△=9b1-4ab+11a.
    ①令y=9b1-4ab+11a,对于任意实数b,均有y>2,所以根据二次函数y=9b1-4ab+11的图象性质解答;
    ②利用二次函数图象的对称性质解答即可.
    【详解】
    (1)当a=1,b=1时,m=1m1+4m+1﹣4,
    解得m=或m=﹣1.
    所以点P的坐标是(,)或(﹣1,﹣1);
    (1)m=am1+(3b+1)m+b﹣3,
    △=9b1﹣4ab+11a.
    ①令y=9b1﹣4ab+11a,对于任意实数b,均有y>2,也就是说抛物线y=9b1﹣4ab+11的图象都在b轴(横轴)上方.
    ∴△=(﹣4a)1﹣4×9×11a<2.
    ∴2<a<17.
    ②由“和谐点”定义可设A(x1,y1),B(x1,y1),
    则x1,x1是ax1+(3b+1)x+b﹣3=2的两不等实根,.
    ∴线段AB的中点坐标是:(﹣,﹣).代入对称轴y=x﹣(+1),得
    ﹣=﹣(+1),
    ∴3b+1=+a.
    ∵a>2,>2,a•=1为定值,
    ∴3b+1=+a≥1=1,
    ∴b≥.
    ∴b的最小值是.
    【点睛】
    此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.
    23、详见解析.
    【解析】
    四边形ABCD是正方形,利用已知条件先证明四边形ABCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD是正方形.
    【详解】
    证明:在四边形ABCD中,OA=OC,OB=OD,
    ∴四边形ABCD是平行四边形,
    ∵OA=OB=OC=OD,
    又∵AC=AO+OC,BD=OB+DO,
    ∴AC=BD,
    ∴平行四边形是矩形,
    在△AOB中,,

    ∴△AOB是直角三角形,即AC⊥BD,
    ∴矩形ABCD是正方形.
    【点睛】
    本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强.
    24、(1)x1=1+,x1=1﹣;(1)x1=3,x1=.
    【解析】
    (1)配方法解;
    (1)因式分解法解.
    【详解】
    (1)x1﹣1x﹣1=2,
    x1﹣1x+1=1+1,
    (x﹣1)1=3,
    x﹣1= ,
    x=1,
    x1=1,x1=1﹣,
    (1)(x+1)1=4(x﹣1)1.
    (x+1)1﹣4(x﹣1)1=2.
    (x+1)1﹣[1(x﹣1)]1=2.
    (x+1)1﹣(1x﹣1)1=2.
    (x+1﹣1x+1)(x+1+1x﹣1)=2.
    (﹣x+3)(3x﹣1)=2.
    x1=3,x1=.
    【点睛】
    考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.

    相关试卷

    浙江省嘉兴市六校联考2022-2023学年中考数学全真模拟试题含解析:

    这是一份浙江省嘉兴市六校联考2022-2023学年中考数学全真模拟试题含解析,共18页。

    浙江杭州经济开发区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份浙江杭州经济开发区六校联考2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了老师在微信群发了这样一个图,在平面直角坐标系中,点P等内容,欢迎下载使用。

    浙江省杭州杭州经济开发区五校联考2021-2022学年中考数学押题试卷含解析:

    这是一份浙江省杭州杭州经济开发区五校联考2021-2022学年中考数学押题试卷含解析,共21页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map