湖北省高中名校联盟2023届高三上学期第二次联合测评数学试题
展开本试题共4页,22题。满分150分。考试用时120分钟。考试时间:2022年11月15日下午15:00-17:00
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,用签字笔或钢笔将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题)
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合,集合,则( )
A.B.C.D.
2.设复数,则( )
A.z的虚部为B.C.z的实部为D.
3.已知x,y是任意实数,则p:是q:且的( )
A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件
4.已知函数在上单调递增,则a的取值范围为( )
A.B.C.D.
5.已知,,则( )
A.B.-7C.7D.
6.已知,,则在方向上的投影向量的坐标为( )
A.B.C.D.
7.2022年10月16日中国共产党二十大报告中指出“我们经过接续奋斗,实现了小康这个中华民族的千年梦想,打赢人类历史上规模最大的脱贫攻坚战,历史性地解决绝对贫困问题,为全球减贫事业作出了重大贡献”,为进一步了解和巩固脱贫攻坚成果,某县选派7名工作人员到A,B,C三个乡镇进行调研活动,每个乡镇至少去1人,恰有两个乡镇所派人数相同,则不同的安排方式共有( )
A.1176B.2352C.1722D.1302
8.在A、B、C三个地区爆发了流感,这三个地区A、B、C分别有6%、5%、4%的人患了流感,假设这三个地区的人口数的比为5:7:8,现从这三个地区中任意选取一个人.则下列叙述正确的是( )
A.这个人患流感的概率为0.15
B.此人选自A地区且患流感的概率为0.0375
C.如果此人患流感,此人选自A地区的概率为
D.如果从这三个地区共任意选取100人,则平均患流感的人数为4人
二、多项选择题(每小题有多于一个的正确选项,全答对得5分,部分答对得2分,有错误选项的得0分)
9.下列叙述正确的是( )
A.的最小值为
B.命题p:,的否定为:,
C.8个数据148、148、154、154、146、142、156、158的中位数为151
D.设随机变量X服从正态分布且,则
10.如图,棱长为2的正方体中,P为线段上动点(包括端点).则下列结论正确的是( )
A.当点P在线段上运动时,三棱锥的体积为定值
B.记过点P平行于平面的平面为,截正方体截得多边形的周长为
C.当点P为中点时,异面直线与所成角为
D.当点P为中点时,三棱锥的外接球表面积为
11.已知抛物线C:过点,焦点为F,准线与x轴交于点T,直线l过焦点F且与抛物线C交于P,Q两点,过P,Q分别作抛物线C的切线,两切线相交于点H,则下列结论正确的是( )
A.B.抛物线C的准线过点H
C.D.当取最小值时,
12.已知函数(),(),则下列说法正确的是( )
A.若有两个零点,则
B.若且,则
C.函数在区间有两个极值点
D.过原点的动直线l与曲线相切,切点的横坐标从小到大依次为:,,…,.则
三、填空题(每小题5分,共20分,把正确答案填写在答题卡相应位置上.)
13.的展开式中的系数为_______________.
14.设双曲线C:(,)的左、右焦点分别为,,若过点且斜率为的直线l与双曲线的右支交于A,B两点,则该双曲线的离心率的取值范围为_______________.
15.已知数列满足,,且,则______________.
16.若不等式对任意恒成立,则a的取值范围是_______________.
四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(10分)
已知等差数列中,首项,公差,,,成等比数列.
(1)求数列的通项公式;
(2)若,设数列的前n项和为,,求正整数n的最大值.
18.(12分)
中,内角A,B,C的对边分别为a,b,c.已知,.
(1)求角B;
(2)若边上的点D满足,,求的面积.
19.(12分)
如图1,在直角梯形中,,,,,沿、、将,,折起,使得、、三点重合在一起,得到图2所示三棱锥.
(1)求三棱锥的体积;
(2)求平面与平面的夹角的余弦值.
20.(12分)
国庆节期间某商场开展了一项促销活动,凡在商场消费金额满200元的顾客可以免费抽奖一次,抽奖的规则如下:箱子内装有10张大小、形状、材质完全相同的卡片,其中写有“喜”“迎”“国”“庆”的卡片各两张,另两张是没有写汉字的空白卡片;顾客抽奖时,一次性抽取4张卡片,抽完后卡片放回,记抽出的四张卡片上的汉字的个数为n(若出现两个相同的汉字,则只算一个,如抽出“迎”“迎”“国”“庆”,则),若则中一等奖,则中二等奖,则中三等奖,时没有奖励。商场规定:一等奖奖励20元购物券,二等奖奖励10元购物券,三等奖奖励5元购物券.
(1)求某位顾客中一等奖的概率;
(2)若某位顾客可以抽奖2次,记2次抽奖所获购物券的总金额为X,求X的数学期望.
21.(12分)
已知椭圆:()的离心率为,的长轴的左、右端点分别为、,与圆上点的距离的最大值为.
(1)求椭圆的方程;
(2)一条不垂直坐标轴的直线交于C、D两点(C、D位于x轴两侧),设直线、、、的斜率分别为、、、,满足,问直线是否经过定点,若过定点,求出该定点,否则说明理由.
22.(12分)
已知函数,
(1)时,求函数在上的单调区间;
(2)时,试讨论在区间上的零点个数.
湖北省高中名校联盟2023届高三第二次联合测评
数学试题参考答案与评分细则
一、选择题:
二、填空题:
13.40 14. 15.2550 16.
8.【详解】记事件D:选取的这个人患了流感,记事件E:此人来自A地区,记事件F:此人来自B地区,记事件G:此人来自C地区,
则,且D、E、F彼此互斥,
由题意可得,,,
,,,
A.由全概率公式可得;A错误;
B.,,选自A地区且患流感的概率为0.0150;B错误;
C.由条件概率公式可得.C正确.
D.从这三个地区中任意选取一个人患流感的概率为0.0485,任意选取100个人,患流感的人数设为X,则,即;D错误.
12.【详解】A.,则,令,解得,当,,在单调递减,当,,在单调递增,所以是的极小值点同时也是最小值点,即,当时,,即时,因为,所以在只有一个零点,又因为,只需证明恒成立,即可得到在内只有一个零点,所以在R上有两个零点,A正确;
B.∵
∴
∴即,.
C.结合图像知为端点,不是极值点;
D.∵,,则,设切点坐标为,则切线斜率为,则,
即,D正确.
16.【详解】∵恒成立
∴
∴
∵函数在单调递减,在单调增.
∴ ∴即.
17.【详解】(1)由题意可知:,解得
∴ ∴4分
(2)由题意可知6分
∴8分
∵解得
∴n的最大整数为161710分
18.【详解】(1)在中,由正弦定理可得:
∵ ∴
∴2分
∵ ∴
化简可得:∴ ∵ ∴4分
∴ ∴5分
备注:过程中未交代角度的范围扣1分.
(2)∵
∴
两边平方得:
∴③
在中,由余弦定理:
化简得:④,8分
由③④可得:
∴或10分
当时,,∴;
当时,,,∴;12分
19.【详解】(1),,由翻折问题的性质可得:
,,,,面
∴面 ∵,,交于一点
∴,,,根据余弦定理可得
∴5分
备注:此处未证明线面垂直直接计算结果正确扣2分.
(2)过点P在平面内作的垂线,∵面,∴以P为原点,垂线为x轴,为y轴,为x轴建立如图所示坐标系:
,,,,7分
设平面法向量为,
取,取平面的法向量11分
所以,所以二面角的余弦值为12分
20.解:(1)由题意设获一等奖的概率为P,则3分
(2)设一次抽奖所获奖励为Y,则Y的可能取值为20,10,5,0
∴,
,
9分
所以Y的分布列为:
∴11分
因为两次抽奖相互独立,所以12分
21.解:设,由题意知:,
又∵,∴
∴椭圆方程为:.4分
(2)设直线的方程为:联立方程得:
,设、,
∴,6分
∵
∴,同理
∵
∴
∴
∵
∴8分
∴即
∴
∴
∴
∴
∴或.11分
显然直线不过点
所以直线过定点12分
22.解:(1)时,,∴1分
而在上单调递增,而
∴,.
∴在上单调递减4分
(2)当时:
①时,, ∴ ∴在区间上无零点6分
②时,方程的解等价于方程的解.
时,在单调递增,
而
∴唯一使得且在单调递减,单调递增
而,
∴在上有两个零点8分
③时,,,
令,则在上单调递减
,,
唯一使得
∴在单调递增,上单调递减
而,,
∴唯一使得
∴在单调递增,上单调递减
而,
∴在上无零点.10分
④时
∴在单调递减
而,
∴唯一使得11分
综上所述:时,在区间有三个零点12分
1
2
3
4
5
6
7
8
9
10
11
12
D
B
C
B
B
C
A
C
BC
ACD
ABD
ABD
Y
20
10
5
0
P
湖北省高中名校联盟2023-2024学年高三上学期第二次联合测评数学试题(Word版附答案): 这是一份湖北省高中名校联盟2023-2024学年高三上学期第二次联合测评数学试题(Word版附答案),共14页。试卷主要包含了选择题的作答,非选择题的作答,已知为等差数列,,则,已知,且,则的最大值为,如图,已知,是双曲线C等内容,欢迎下载使用。
2024湖北省高中名校联盟高三上学期第二次联合测评数学PDF版含答案: 这是一份2024湖北省高中名校联盟高三上学期第二次联合测评数学PDF版含答案,文件包含湖北省高中名校联盟2024届高三第二次联合测评数学答案pdf、湖北省高中名校联盟2024届高三第二次联合测评数学pdf等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
【期中真题】湖北省高中名校联盟2023届高三上学期第二次联合测评数学试题.zip: 这是一份【期中真题】湖北省高中名校联盟2023届高三上学期第二次联合测评数学试题.zip,文件包含期中真题湖北省高中名校联盟2023届高三上学期第二次联合测评数学试题原卷版docx、期中真题湖北省高中名校联盟2023届高三上学期第二次联合测评数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。