搜索
    上传资料 赚现金
    英语朗读宝

    3.4.2 三角函数的性质(2)(精讲)-【一隅三反】最新高考数学一轮复习(基础版)(新高考地区专用) 试卷

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      3.4.2 三角函数的性质(2)(精讲)(基础版)(原卷版).docx
    • 3.4.2 三角函数的性质(2)(精讲)(基础版)(解析版).docx
    3.4.2 三角函数的性质(2)(精讲)(基础版)(原卷版)第1页
    3.4.2 三角函数的性质(2)(精讲)(基础版)(原卷版)第2页
    3.4.2 三角函数的性质(2)(精讲)(基础版)(原卷版)第3页
    3.4.2 三角函数的性质(2)(精讲)(基础版)(解析版)第1页
    3.4.2 三角函数的性质(2)(精讲)(基础版)(解析版)第2页
    3.4.2 三角函数的性质(2)(精讲)(基础版)(解析版)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    3.4.2 三角函数的性质(2)(精讲)-【一隅三反】最新高考数学一轮复习(基础版)(新高考地区专用)

    展开

    这是一份3.4.2 三角函数的性质(2)(精讲)-【一隅三反】最新高考数学一轮复习(基础版)(新高考地区专用),文件包含342三角函数的性质2精讲基础版解析版docx、342三角函数的性质2精讲基础版原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
    3.4.2  三角函数的性质(2)(精讲)(基础版)考点一 解析式【例1-1】2022·山东·烟台二中)若函数的部分图象如图所示,则的值是(       A B C D【答案】C【解析】由图象可知,所以,由于,所以.故选:C【例1-22022·全国·高三专题练习)如图所示,某地一天6~14时的温度变化曲线近似满足函数,则这段曲线的函数解析式可以为(  )A BC D【答案】A【解析】由于,所以,所以,故又过点,则有,即所以,取,得,符合题意选:A【例1-3】2021·贵州·高三阶段练习)函数fx=sinωx+φ+cosωx+φ)(ω>0|φ|<)的部分图象如图所示,则φ=       A B- C- D【答案】A【解析】因为,所以.因为,所以,所以,即.故选:A【一隅三反】1.(2022·甘肃武威)函数Aωφ为常数,A>0ω>0)的部分图象如图所示,则(  )A B C D【答案】B【解析】由图可知,则,所以,所以代入得,所以,所以.故选:B.2.(2021·陕西省洛南中学)已知函数的部分图象如图所示,则的解析式是(       A BC D【答案】A【解析】由图象可得,解得A=2k=1,由正弦型图象性质可得所以,解得,又,且,所以,所以.故选:A32022·广东·佛山市顺德区容山中学)已知函数的部分图象如图所示,则函数的解析式可能为(       A BC D【答案】A【解析】设,由图可知,,则,即.故选:A.4.(2022·四川南充·二模)函数的部分图像如图所示,,则(       A关于点对称           B关于直线对称C上单调递减       D上是单调递增【答案】C【解析】由图可知,且,所以,即,因为,所以,即,因为,所以函数关于直线对称,故A错误;,所以函数关于对称,故B错误;对于C:由,所以,因为上单调递减,所以上单调递减,故C正确;对于D:由,则,因为上不单调,所以上不单调,故D错误;故选:C考点二 定义域【例2】2022·陕西·西安市临潼区铁路中学)求下列函数的定义域.(1)  (2)   (3)【答案】(1)(2)(3).【解析】(1)要使得函数有意义,则,即,解得故函数定义域为.(2)要使得函数有意义,则,即,解得故函数定义域为.(3)要使得函数有意义,则,即,解得,故函数定义域为.   【一隅三反】1.(2022·全国·高三专题练习)若函数的定义域为(  )A BC D【答案】B【解析】由题意,得,则故选:B2.(2022·江苏)函数的定义域是(       A B C D【答案】A【解析】由题知,,解得解得, 时,由,解得.时,区间无交集;时,区间无交集;所以函数的定义域.故选:A.3.(2022·四川绵阳)函数的定义域为A BC D【答案】C【解析】由函数,则满足,解得即函数的定义域为,故选C.4.(2022·全国·高三专题练习)函数()的定义域是(       A B C D【答案】A【解析】由题意,得,则,即.故选:A.考点三 值域【例3-1】2022·吉林)已知函数的最小正周期为,则函数在区间上的最大值与最小值的和是___________.【答案】1【解析】由题设,,则上,当,故;当,故综上,最大值与最小值的和为1.故答案为:1【例3-2】2021·全国·课时练习)已知,则的最大值和最小值分别为______【答案】6【解析】因,又函数上单调递增,在上单调递减,于是得,因此当时,,当时,,所以的最大值和最小值分别为6.故答案为:6【例3-32021·宁夏·吴忠中学高三阶段练习(理))当时,不等式恒成立,则实数m的取值范围为____【答案】【解析】设由题意知m<f(x)<m+2上恒成立,实数m的取值范围为.故答案为:【一隅三反】12021·天津·高三期中)在区间的值域是_________.【答案】【解析】因为,所以,所以,所以函数的值域为故答案为:2.(2022·北京二中)函数的值域为______.【答案】【解析】依题意,原函数定义域为R,而则当时,,当时,,所以所求值域是.故答案为:3.(2021·全国·专题练习)已知函数.若关于的方程上有解,则实数的取值范围是________【答案】【解析】因为因为,所以,所以所以的值域为关于的方程上有解,则关于的方程上有解,所以,所以,所以实数的取值范围是故答案为:4.(2022·四川·高三学业考试)已知函数.(1)求函数的最小正周期;(2)求函数上的最值.【答案】(1)(2)最大值为,最小值为【解析】(1)∵,即函数的最小正周期为(2)在区间上,的最大值为的最小值为考点四 伸缩平移【例4-1】2022·重庆市育才中学高三阶段练习)为了得到的图象,可将函数的图象(       A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位【答案】C【解析】依题意,所以可由向左平移个单位得到.故选:C【例4-2】2022·河南省杞县高中模拟预测(理))已知函数的图象为C,为了得到函数的图象,只要把C上所有点(       A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变【答案】B【解析】根据三角函数的图象变换,将的图象上所有点的横坐标缩短为原来倍,即可得到函数.故选:B【例4-32022·陕西·二模)要得到函数的图象,只需将函数的图象(       A.向左平移是个单位长度 B.向左平移个单位长度C.向右平移登个单位长度 D.向右平移个单位长度【答案】B【解析】因为函数所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:B.【例4-42022·山西·怀仁市第一中学校二模(理))将函数的图象上所有点的横坐标变为原来的一半、纵坐标不变,然后向右平移个单位长度后得到函数的图象,则(       A BC D【答案】B【解析】将函数的图象上所有点的横坐标变为原来的一半、纵坐标不变,得到函数,再将函数向右平移个单位长度得到函数,所以.故选:B.【例4-5】2022·四川达州·二模(理))将函数图象上所有点向左平移个单位长度,得到函数的图象,若是奇函数,则a的最小值是(       A B C D【答案】D【解析】,则图象上所有点向左平移个单位长度,,因为是奇函数,所以,所以,因为,所以的最小值为,故选:D【一隅三反】1.(2022·四川师范大学附属中学二模(文))函数其中的图象如图所示,为了得到的图象只要将的图象(       A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位【答案】A【解析】由图可知,,得,所以,从而代入可得,,因此,得,又,所以,所以,为了得到,所以将函数向右平移个单位即可.故选:A.2.(2022·内蒙古包头·一模)把函数图象上所有点的横坐标伸长到原来的倍,纵坐标不变,再把所得曲线向左平移个单位长度,得到函数的图象,则       A B C D【答案】C【解析】由题意可知,将函数的图象先向右平移个单位长度,得到函数的图象,再将所得图象上所有点的横坐标缩短为原来的,纵坐标不变,可得到函数的图象.故选:C.3.(2022·江西·南昌十中高三阶段练习)将函数的图象沿轴向左平移个单位后,得到关于轴对称的图象,则的最小值为(       A B C D【答案】A【解析】函数将函数的图象沿轴向左平移个单位后,得到函数因为函数是偶函数,时,.则的最小值为故选:A4.(2022·陕西·模拟预测)把函数的图象向左平移个单位长度得到函数的图象,若上是减函数,则实数a的最大值为(       A B C D【答案】A【解析】由题设,,则递减,即递减,

    相关试卷

    新高考数学一轮复习基础巩固3.4.2 三角函数的性质(2)(精讲)(含解析):

    这是一份新高考数学一轮复习基础巩固3.4.2 三角函数的性质(2)(精讲)(含解析),共14页。试卷主要包含了解析式,定义域,值域,伸缩平移等内容,欢迎下载使用。

    备战2024年高考数学一轮复习(一隅三反基础版新高考专用)3-4-2 三角函数的性质(2)(精讲)(基础版)(原卷版):

    这是一份备战2024年高考数学一轮复习(一隅三反基础版新高考专用)3-4-2 三角函数的性质(2)(精讲)(基础版)(原卷版),共8页。试卷主要包含了解析式,定义域,值域,伸缩平移等内容,欢迎下载使用。

    备战2024年高考数学一轮复习(一隅三反基础版新高考专用)3-4-2 三角函数的性质(2)(精讲)(基础版)(解析版):

    这是一份备战2024年高考数学一轮复习(一隅三反基础版新高考专用)3-4-2 三角函数的性质(2)(精讲)(基础版)(解析版),共15页。试卷主要包含了解析式,定义域,值域,伸缩平移等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map