开学活动
搜索
    上传资料 赚现金

    专题04 反比例函数模型(专项突破)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题04 反比例函数模型(专项突破)-原卷版.docx
    • 解析
      专题04 反比例函数模型(专项突破)-解析版.docx
    专题04 反比例函数模型(专项突破)-原卷版第1页
    专题04 反比例函数模型(专项突破)-原卷版第2页
    专题04 反比例函数模型(专项突破)-原卷版第3页
    专题04 反比例函数模型(专项突破)-解析版第1页
    专题04 反比例函数模型(专项突破)-解析版第2页
    专题04 反比例函数模型(专项突破)-解析版第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题04 反比例函数模型(专项突破)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版)

    展开

    这是一份专题04 反比例函数模型(专项突破)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版),文件包含专题04反比例函数模型专项突破-解析版docx、专题04反比例函数模型专项突破-原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
    专项突破04 反比例函数模型
    【思维导图】

    ◎突破一 一点一垂线
    例.(2020·河北·石家庄外国语学校九年级期中)反比例函数y=图象如图所示,下列说法正确的是(  )

    A.k>0
    B.y随x的增大而减小
    C.若矩形OABC面积为2,则k=﹣2
    D.若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是y<1
    【答案】C
    【分析】根据反比例函数的性质对A、B、D进行判断;根据反比例函数系数k的几何意义对C进行判断.
    【详解】解:A、反比例函数图象分布在第二、四象限,则k<0,所以A选项错误;
    B、在每一象限,y随x的增大而增大,所以B选项错误;
    C、矩形OABC面积为2,则|k|=2,而k<0,所以k=﹣2,所以C选项正确;
    D、若图象上点B的坐标是(﹣2,1),则当x<﹣2时,y的取值范围是0<y<1,所以D选项错误.
    故选:C.
    【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.
    专训1.(2021·全国·九年级专题练习)如图,函数(x>0)和(x>0)的图象将第一象限分成三个区域,点M是②区域内一点,MN⊥x轴于点N,则△MON的面积可能是(       )

    A.0.5. B.1. C.2. D.3.5.
    【答案】C
    【分析】分别假设点M在和上,即可得出△MON面积可能的值.
    【详解】解:∵点M是②区域内一点,且MN⊥x轴于点N,
    假设点M落在上,
    根据反比例函数的性质,可得:△MON的面积为1,
    假设点M落在上,
    根据反比例函数的性质,可得:△MON的面积为3,
    ∴△MON的面积可能是2,
    故选C.
    【点睛】考查了反比例函数的图象的知识,解题的关键是了解系数k的几何意义.
    专训2.(2022·湖南娄底·九年级期末)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是(  )

    A.4 B.﹣4 C.8 D.﹣8
    【答案】D
    【分析】根据反比例函数图象上点的几何意义求解即可.
    【详解】解:连接OA,如图,
    ∵轴,
    ∴OC∥AB,





    故选D.

    【点睛】本题考查了反比例函数解析式,解决此题的关键是能正确利用反比例函数图像上点的意义.
    专训3.(2021·全国·九年级专题练习)如图,面积为2的Rt△OAB的斜边OB在x轴上,∠ABO=30°,反比例函数图象恰好经过点A,则k的值为(  )

    A.﹣2 B.2 C. D.﹣
    【答案】D
    【分析】作AD⊥OB于D,根据30°角的直角三角形的性质得出OA=OB,然后通过证得△AOD∽△BOA,求得△AOD的面积,然后根据反比例函数的几何意义即可求得k的值.
    【详解】解:作AD⊥OB于D,

    ∵Rt△OAB中,∠ABO=30°,
    ∴OA=OB,
    ∵∠ADO=∠OAB=90°,∠AOD=∠BOA,
    ∴△AOD∽△BOA,
    ∴,
    ∴S△AOD=S△BOA=×2=,
    ∵S△AOD=|k|,
    ∴|k|=,
    ∵反比例函数y=图象在二、四象限,
    ∴k=﹣,
    故选D.
    【点睛】本题考查的是反比例函数系数k的几何意义,三角形相似的判定和性质,求得△AOD的面积是是解答此题的关键.
    ◎突破二 一点两垂线
    例.(2021·全国·九年级专题练习)如图,点A是反比例函数y=的图象上的一点,过点A作□ ABCD,使点C在x轴上,点D在y轴上,若□ABCD面积为6,则k的值是(     )

    A.1 B.3 C.6 D.-6
    【答案】C
    【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD//x轴,则可判断四边形ADOE为矩形,所以平行四边形ABCD的面积=矩形ADOE的面积,根据反比例函数k的几何意义得到矩形ADOE的面积=|−k|,则|−k|=6,利用反比例函数图象得到−k0,于是有k=6.
    【详解】解:作AE⊥BC于E,如图,


    ∵四边形ABCD为平行四边形,
    ∴AD//x轴,∴四边形ADOE为矩形,
    ∴,而 =|−k|,
    ∴|−k|=6,而−k0,∴k=6.
    故选C.
    【点睛】本题考查了反比例函数(k≠0)系数k的几何意义:从反比例函数(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    专训1.(2021·全国·九年级专题练习)如图,点A是反比例函数图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为(     )

    A.-4 B.2 C.4 D.8
    【答案】C
    【分析】根据反比函数的几何意义,可得矩形ABOC的面积等于比例系数的绝对值,即可求解.
    【详解】解:∵点A是反比例函数图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,
    ∴矩形ABOC的面积 .
    故选:C.
    【点睛】本题主要考查了反比函数的几何意义,熟练掌握本题主要考查了反比例函数 中 的几何意义,即过双曲线上任意一点引 轴、 轴垂线,所得矩形面积等于 是解题的关键.
    专训2.(2021·全国·九年级专题练习)如图,A,B 两点在双曲线 y=上,分别经过 A,B 两点向轴作垂线段,已知阴影小矩形的面积为 1,则空白两小矩形面积的和 S1+S2=______.

    【答案】4
    【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.
    【详解】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
    则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=3,
    ∴S1+S2=3+3-1×2=4.
    故答案为4.
    【点睛】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.
    专训3.(2021·全国·九年级专题练习)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为4,则这个反比例函数的解析式为___________.

    【答案】y=﹣.
    【详解】试题分析:过A点向x轴作垂线,与坐标轴围成的四边形的面积是定值|k|,由此可得出答案.
    解:过A点向x轴作垂线,如图:
    根据反比例函数的几何意义可得:四边形ABCD的面积为4,即|k|=4,
    又∵函数图象在二、四象限,
    ∴k=﹣4,
    即函数解析式为:y=﹣.
    故答案为y=﹣.

    考点:反比例函数系数k的几何意义.

    ◎突破三 两点一垂线
    例.(2021·全国·九年级专题练习)如图,A、B是反比例函数y=的图象上关于原点O对称的任意两点,过点A作AC⊥x轴于点C,连接BC,则△ABC的面积为(       ).

    A.1 B.2 C.3 D.4
    【答案】B
    【分析】根据题意,根据反比例函数的性质,设点A坐标为:,再根据坐标系中两点关于原点对称的性质,得点B坐标;过点做交延长线于点,根据直角坐标系的性质,得的值,通过计算即可得到答案.
    【详解】根据题意,设点A坐标为:,且
    ∵A、B是反比例函数y=的图象上关于原点O对称的任意两点
    ∴点B坐标为:
    ∵过点A作AC⊥x轴于点C
    ∴点C坐标为:

    如图,过点做交延长线于点

    根据题意得:

    故选:B.
    【点睛】本题考查了直角坐标系、反比例函数的知识;解题的关键是熟练掌握直角坐标系、坐标系中两点关于原点对称、反比例函数的性质,从而完成求解.
    专训1.(2021·全国·九年级专题练习)如图,直y=mx与双曲线交于点A,B.过点A作AM⊥x轴,垂足为点M,连接BM.若S△ABM=1,则k的值是(  )

    A.1 B.m﹣1 C.2 D.m
    【答案】A
    【分析】利用三角形的面积公式和反比例函数的图象性质可知.
    【详解】解:由图象上的点A、B、M构成的三角形由△AMO和△BMO的组成,点A与点B关于原点中心对称,
    ∴点A,B的纵横坐标的绝对值相等,
    ∴△AMO和△BMO的面积相等,且为,
    ∴点A的横纵坐标的乘积绝对值为1,
    又因为点A在第一象限内,
    所以可知反比例函数的系数k为1.
    故选A.
    【点睛】本题利用了反比例函数的图象在一、三象限和而确定出k的值.
    专训2.(2022·辽宁沈阳·九年级期末)如图,直线与双曲线交于点A,B.过点A作轴,垂足为点P,连接.若B的坐标为,则_______.

    【答案】3
    【分析】先根据反比例函数和正比例函数的性质求出点的坐标,从而可得的长,再根据三角形的面积公式即可得.
    【详解】解:由题意得:点与点关于原点对称,

    ,边上的高为2,
    轴,

    则,
    故答案为:3.
    【点睛】本题考查了反比例函数与正比例函数,熟练掌握反比例函数和正比例函数的性质(对称性)是解题关键.
    专训3.(2022·四川遂宁·中考真题)已知一次函数(a为常数)与x轴交于点A,与反比例函数交于B、C两点,B点的横坐标为.

    (1)求出一次函数的解析式并在图中画出它的图象;
    (2)求出点C的坐标,并根据图象写出当时对应自变量x的取值范围;
    (3)若点B与点D关于原点成中心对称,求出△ACD的面积.
    【答案】(1),画图象见解析
    (2)点C的坐标为(3,2);当时,或
    (3)
    【分析】(1)根据B点的横坐标为-2且在反比例函数y2=的图象上,可以求得点B的坐标,然后代入一次函数解析式,即可得到一次函数的解析式,再画出相应的图象即可;
    (2)将两个函数解析式联立方程组,即可求得点C的坐标,然后再观察图象,即可写出当y1<y2时对应自变量x的取值范围;
    (3)根据点B与点D关于原点成中心对称,可以写出点D的坐标,然后点A、D、C的坐标,即可计算出△ACD的面积.
    (1)
    解:∵B点的横坐标为-2且在反比例函数y2=的图象上,
    ∴y2==-3,
    ∴点B的坐标为(-2,-3),
    ∵点B(-2,-3)在一次函数y1=ax-1的图象上,
    ∴-3=a×(-2)-1,
    解得a=1,
    ∴一次函数的解析式为y=x-1,
    ∵y=x-1,
    ∴x=0时,y=-1;x=1时,y=0;
    ∴图象过点(0,-1),(1,0),
    函数图象如图所示;

    (2)
    解:解方程组,
    解得或,
    ∵一次函数y1=ax-1(a为常数)与反比例函数y2=交于B、C两点,B点的横坐标为-2,
    ∴点C的坐标为(3,2),
    由图象可得,当y1<y2时对应自变量x的取值范围是x<-2或0<x<3;
    (3)
    解:∵点B(-2,-3)与点D关于原点成中心对称,
    ∴点D(2,3),
    作DE⊥x轴交AC于点E,
    将x=2代入y=x-1,得y=1,
    ∴S△ACD=S△ADE+S△DEC= =2,
    即△ACD的面积是2.
    【点睛】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.

    ◎突破四 两点两垂线
    例.(2021·全国·九年级专题练习)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是(  )

    A.m=,n=﹣ B.m=,n=﹣
    C.m=1,n=﹣2 D.m=4,n=﹣2
    【答案】A
    【分析】设A的坐标为(x,),分别表示出点B和点C的坐标,再根据三角形的面积公式得出,再将各个选项中的值代入比较,据此进行判断即可.
    【详解】解:∵点A是第一象限内双曲线y=(m>0)上一点,
    ∴设A的坐标为(x,),
    ∵AB∥x轴,AC∥y轴,且B、C两点在y=(n<0)上,
    ∴B的坐标为(,),C的坐标为(x,),
    ∴AB=,AC=,
    ∵△ABC的面积为,
    ∴,
    ∴=9,
    ∴,
    ∵将m和n的值代入,只有选项A中不符合.
    故选:A.
    【点睛】本题考查了反比例函数图像上点的特征,三角形形的面积等知识及综合应用知识、解决问题的能力.
    专训1.(2021·全国·九年级专题练习)点A,B分别是双曲线上的点,轴正半轴于点C,轴于点D,联结AD,BC,若四边形ACBD是面积为12的平行四边形,则________.
    【答案】6
    【分析】首先根据平行四边形的性质得出,从而有,然后根据k的几何意义求解即可.
    【详解】如图,

    ∵点A,B分别是双曲线上的点,轴正半轴于点C,轴于点D,

    ∵四边形ACBD是面积为12的平行四边形,

    ∴A,B关于原点对称,




    故答案为:6.
    【点睛】本题主要考查平行四边形的性质以及k的几何意义,掌握平行四边形的性质以及k的几何意义是解题的关键.
    专训2.(2021·全国·九年级专题练习)如图,直线y=mx与双曲线y=交于点A,B,过点A,B分别作AM⊥x轴,BN⊥x轴,垂足分别为M,N,连接BM,AN.若S四边形AMBN=1,则k的值是_______.

    【答案】
    【分析】先证明四边形AMBN是平行四边形,的面积实际上就是面积的2倍,则S△ABM=,结合图象可知.
    【详解】解:∵OA=OB,ON=OM,
    ∴四边形AMBN是平行四边形,
    ∵S四边形AMBN=1,
    ∴S△ABM=,
    设点A的坐标为(x,y),
    ∴B的坐标为(−x,−y),
    ∴×2x×y=,
    ∴xy=,
    ∴k=xy=.
    故答案是:.
    【点睛】本题主要考查反比例函数与一次函数的交点问题,平行四边形的判定和性质,掌握反比例函数的比例系数等于在它上面的点的横纵坐标的积,是解题的关键.

    ◎突破五 两点和原点
    例.(2021·全国·九年级专题练习)如图所示,直线y=-x与双曲线y=交于A,B两点,点C在x轴上,连接AC,BC.当AC⊥BC,S△ABC=15时,k的值为(       )

    A.-10 B.-9 C.-6 D.-4
    【答案】B
    【分析】先利用自正比例函数和反比例函数的性质得到点A与点B关于原点对称,OA=OB,再根据斜边上的中线性质得到OA=OB=OC,设设B(t,−t),则 A(−t,t),利用勾股定理表示出OA=,OC=,接着利用三角形面积公式得到××(t+t)=15,解出t得到A(−,2),进而可求出k的值.
    【详解】解:∵直线y=-x与双曲线y=交于A,B两点,
    ∴点A与点B关于原点对称,OA=OB,
    ∵AC⊥BC,
    ∴∠ACB=90°,
    ∴OA=OB=OC,
    设B(t,−t),则 A(−t,t),
    ∴OA=,
    ∴OC=,
    ∵S△ABC=15,
    ∴××(t+t)=15,解得t=,
    ∴A(−,2),
    把A(−,2)代入y=,得k=−×2=−9.
    故选:B.
    【点睛】本题考查了反比例函数与一次函数的交点问题,掌握正比例函数图像和反比例函数图像的中心对称性,是解题的关键,也考查了待定系数法求函数解析式和直角三角形的性质.
    专训1.(2021·全国·九年级专题练习)如图,点A(m,1),B(2,n)在双曲线(k≠0),连接OA,OB.若S△ABO=8,则k的值是(  )

    A.﹣12 B.﹣8 C.﹣6 D.﹣4
    【答案】C
    【分析】过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2, k),则AC=2﹣k,BC=1﹣k,利用,可计算出的值.
    【详解】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,如下图所示:

    设A(k,1),B(2, k),则AC=2﹣k,BC=1﹣k,
    ∵,
    ∴,
    即 ,
    解得 ,
    ∵,
    ∴,
    故选C.
    【点睛】本题主要考查了反比例函数图像上点的坐标特征,熟知反比例函数图像的性质和坐标与线段之间转化是解题关键.
    专训2.(2022·福建三明·一模)如图,在平面直角坐标系中,四边形ABCD的顶点在双曲线y=和y=上,对角线AC,BD均过点O,AD∥y轴,若S四边形ABCD=12,则k=_____.

    【答案】-4
    【分析】通过平行四边形的性质得到△AOD的面积为3,再根据反比例函数系数k的几何意义得到.
    【详解】解:由双曲线的对称性得OA=OC,OB=OD,
    ∴四边形ABCD为平行四边形,
    ∴,
    ∵AD∥y轴,
    ∴,
    ∴,
    解得k=-4或k=4(舍),
    故答案为:-4.
    【点睛】本题考查反比例函数系数k的几何意义,解题关键是根据题干得到△AOD的面积.
    专训3.(2021·浙江·温州外国语学校二模)如图,是反比例函数图象上一点,过分别作轴、轴的垂线,垂足分别为点,点,且分别交反比例函数图象于点,点,连结,,若图中阴影部分的面积为4,则的值为________.

    【答案】7
    【分析】连接CD,作轴,垂足为E,设,得到D,C,E的坐标,分别表示出△OCD和△DPC的面积,根据,即可得到k值.
    【详解】解:连接CD,作轴,垂足为E,

    设,则,,,
    ∴,,,
    ∴.

    ∴,
    ∴,
    ∴.
    故答案为:7.
    【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.

    ◎突破六 两曲-平行
    例.(2022·湖南衡阳·八年级期中)如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y(x>0)和y(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为(       )
    A.3 B.6 C.9 D.
    【答案】D
    【分析】设P(a,0),由直线APB与y轴平行,得到A和B的横坐标都为a,将x=a代入反比例函数y和y中,分别表示出A和B的纵坐标,进而由AP+BP表示出AB,三角形ABC的面积AB×P的横坐标,求出即可.
    【详解】解:设P(a,0),a>0,则A和B的横坐标都为a,

    将x=a代入反比例函数y中得:y,故A(a,);
    将x=a代入反比例函数y中得:y,故B(a,),
    ∴AB=AP+BP,
    则S△ABCAB•xP,
    故选D.
    【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k的几何意义.
    专训1.(2022·江西南昌·九年级期末)如图,两个反比例函数y和y在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为(       )

    A.1 B.2 C.4 D.无法计算
    【答案】A
    【分析】根据反比例函数y(k≠0)系数k的几何意义得到S△POA4=2,S△BOA2=1,然后利用S△POB=S△POA﹣S△BOA进行计算即可.
    【详解】∵PA⊥x轴于点A,交C2于点B,
    ∴S△POA4=2,S△BOA2=1,
    ∴S△POB=2﹣1=1.
    故选:A.
    【点睛】本题考查了反比例函数y(k≠0)系数k的几何意义:从反比例函数y(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    专训2.(2021·全国·九年级专题练习)如图,直线l⊥x轴于点P,且与反比例函数y1(x>0)及y2(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1﹣k2的值等于(       )

    A.1 B.3 C.6 D.8
    【答案】C
    【分析】先根据反比例函数k的几何意义可得△AOP的面积为,△BOP的面积为,由题意可知△AOB的面积为3,最后求出k1﹣k2的值即可.
    【详解】解:由反比例函数k的几何意义可得:△AOP的面积为,△BOP的面积为,
    ∴△AOB的面积为,
    ∴3,
    ∴k1﹣k2=6.
    故选C.
    【点睛】本题主要考查了反比例函数中k的几何意义,掌握反比例函数中k表示相关三角形的面积成为解答本题的关键.
    专训3.(2021·北京·首都师范大学附属育新学校九年级开学考试)如图,在中,,轴,点A在反比例函数的图象上.若点B在y反比例函数的图象上,则k的值为(       )

    A. B. C.3 D.-3
    【答案】D
    【分析】设,根据平行线的性质求出B点坐标,计算即可;
    【详解】设点A的坐标为,
    ∵轴,
    ∴令,则,
    ∴,
    ∴,
    ∴;
    故答案选D.
    【点睛】本题主要考查了反比例函数的解析式求解,准确计算是解题的关键.


    英语朗读宝
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map