(新高考)高考物理一轮复习课件第3章第3讲《牛顿运动定律的综合应用》(含解析)
展开第3讲 牛顿运动定律的综合应用
主干梳理 对点激活
2.类型多过程问题可根据涉及物体的多少分为单体多过程问题和多体多过程问题。3.综合运用牛顿第二定律和运动学知识解决多过程问题的关键首先明确每个“子过程”所遵守的规律,其次找出它们之间的关联点,然后列出“过程性方程”与“状态性方程”。
一 堵点疏通1.整体法和隔离法是确定研究对象时常用的方法。( )2.应用牛顿第二定律对整体进行分析时,需要分析内力。( )3.轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等的。( )4.相互接触的物体分离时的临界状态是两者没有共同的加速度。( )
二 对点激活1. (2020·福建省漳州市二校高三上学期第一次联考)如图所示,A、B两个物体叠放在一起,静止在粗糙水平地面上,B与水平地面间的动摩擦因数μ1=0.1,A与B之间的动摩擦因数μ2=0.2。已知物体A的质量m=2 kg,物体B的质量M=3 kg,重力加速度g取10 m/s2。现对物体B施加一个水平向右的恒力F,为使物体A与物体B相对静止,则恒力的最大值是(物体间的最大静摩擦力等于滑动摩擦力)( )A.20 N B.15 N C.10 N D.5 N
解析 当F作用在物体B上,A、B恰好不相对滑动时,则A、B间静摩擦力达到最大值,对物体A隔离分析,根据牛顿第二定律有:μ2mg=ma;对整体,根据牛顿第二定律有:Fmax-μ1(m+M)g=(m+M)a;联立并代入数据解得:Fmax=15 N,故B正确,A、C、D错误。
2. 在探索测定轨道中人造天体的质量的方法过程中做了这样的一个实验:用已知质量为m1的宇宙飞船去接触正在轨道上运行的火箭组(后者的发动机已熄灭)。接触后,开动宇宙飞船的推进器,使飞船和火箭组共同加速,如图所示。推进器的平均推力为F,开动时间为t,测出飞船和火箭组的速度变化是Δv,求火箭组的质量m2。
考点细研 悟法培优
1.连接体的类型(1)弹簧连接体(2)物物叠放连接体
(3)物物并排连接体(4)轻绳连接体(5)轻杆连接体
2.连接体的运动特点(1)轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。(2)轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。一般情况下,连接体沿杆方向的分速度相等。(3)轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。
3.连接体的受力特点轻绳、轻弹簧的作用力沿绳或弹簧方向,轻杆的作用力不一定沿杆。4.处理连接体问题的方法(1)整体法若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合力,应用牛顿第二定律求出加速度(或其他未知量)。
(2)隔离法若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。(3)整体法、隔离法交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。即“先整体求加速度,后隔离求内力”。若已知物体之间的作用力,求连接体所受外力,则“先隔离求加速度,后整体求外力”。
例1 (2020·安徽省示范高中名校高三上联考)如图所示,置于粗糙水平面上的物块A和B用轻质弹簧连接,在水平恒力F的作用下,A、B以相同的加速度向右运动。A、B的质量关系为mA>mB,它们与地面间的动摩擦因数相同。为使弹簧稳定时的伸长量增大,下列操作可行的是( )A.仅减小B的质量B.仅增大A的质量C.仅将A、B的位置对调D.仅减小水平面的粗糙程度
提示:整体。(2)以谁为研究对象求弹簧弹力?提示:B。
(2)通过跨过滑轮的绳连接的连接体问题:若要求绳的拉力,一般都必须采用隔离法。绳跨过定滑轮连接的两物体的加速度虽然大小相同但方向不同,故采用隔离法。
[变式1-2] (2020·河北唐山高三上学期第一次联考)如图所示,光滑水平面上放置质量分别为m、2m、3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T。现用水平拉力F拉其中一个质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是( )A.质量为2m的木块受到四个力的作用B.当F逐渐增大到T时,轻绳刚好被拉断C.当F逐渐增大到1.5T时,轻绳还不会被拉断
1.基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段)。(2)寻找过程中变化的物理量。(3)探索物理量的变化规律。(4)确定临界状态,分析临界条件,找出临界关系。
例2 如图所示,质量为M=2 kg的长木板位于光滑水平面上,质量为m=1 kg的物块静止在长木板上,两者之间的动摩擦因数为μ=0.5。重力加速度大小为g=10 m/s2,物块与长木板之间的最大静摩擦力等于两者之间的滑动摩擦力。现对物块施加水平向右的力F,下列说法正确的是( )A.水平力F=3 N时,物块m将保持静止状态B.水平力F=6 N时,物块m将在长木板M上滑动C.水平力F=7 N时,长木板M的加速度大小为2.5 m/s2D.水平力F=9 N时,长木板M受到的摩擦力大小为5 N
提示:m和M之间的摩擦力达到最大静摩擦力。(2)如何求使m和M发生相对滑动所对应的临界外力F?提示:先隔离M再整体分析。
叠加体系统临界问题的求解思路
[变式2-1] (2020·江西省赣州市十五县市高三上期中)(多选)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是( )A.物体的质量为3 kgB.弹簧的劲度系数为500 N/mC.物体的加速度大小为5 m/s2D.物体与弹簧分离时,弹簧处于原长状态
[变式2-2] (2020·广东省深圳市高三(下)第二次调研)如图所示,卡车上固定有倾角均为37°的两个光滑斜面体,匀质圆筒状工件置于两个斜面间。卡车正以90 km/h的速度匀速行驶,为了保证刹车时工件不与其中任何一个斜面脱离,则其刹车的最小距离更接近于(路面能提供足够大摩擦,sin37°=0.6)( )A.23 m B.33 m C.43 m D.53 m
应用牛顿运动定律解决多过程问题的步骤(1)将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接。(2)对各“子过程”进行受力分析和运动分析,必要时画出受力图和过程示意图。(3)根据“子过程”“衔接点”的模型特点选择合理的物理规律列方程。(4)分析“衔接点”速度、加速度等的关联,确定各“子过程”间的时间关联、位移关联,并列出相关的辅助方程。(5)联立方程组,分析求解,对结果进行必要的验证或讨论。
例3 如图甲所示,“ ”形木块放在光滑水平地面上,木块水平表面AB粗糙,BC光滑且与水平面夹角为θ=37°。木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值。一个可视为质点的质量为m的滑块从C点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图乙所示。已知sin37°=0.6,cs37°=0.8,g取10 m/s2。求:(1)斜面BC的长度s;(2)滑块与木块AB表面的动摩擦因数μ。
提示:滑块对木块压力的水平分力。(2)滑块在BA上滑动时,力传感器示数等于哪个力的大小?提示:滑块与木块间的摩擦力。
应用牛顿运动定律解决多过程问题的策略(1)任何多过程的复杂物理问题都是由很多简单的小过程构成。有些是承上启下,上一过程的结果是下一过程的已知,这种情况,一步一步完成即可;有些是树枝型,告诉的只是旁支,要求的是主干(或另一旁支),这就要求仔细审题,找出各过程的关联,按顺序逐个分析。(2)对于每一个研究过程,选择什么规律、应用哪一个运动学公式要明确。(3)注意两个过程的连接处,加速度可能突变,但速度一般不会突变,速度是联系前后两个阶段的桥梁。
[变式3-1] 如图所示,套在水平直杆上质量为m的小球开始时静止,现对小球沿杆方向施加恒力F0,垂直于杆方向施加竖直向上的力F,且F的大小始终与小球的速度成正比,即F=kv(图中未标出)。已知小球与杆间的动摩擦因数为μ,小球运动过程中未从杆上脱落,且F0>μmg。下列关于小球运动中的速度—时间图像正确的是( )
解析 开始时小球所受支持力方向向上,随着时间的增加,小球速度增大,F增大,则支持力减小,摩擦力减小,根据牛顿第二定律,可知这一阶段小球的加速度增大。当竖直向上的力F的大小等于小球重力的大小时,小球的加速度最大。再往后竖直向上的力F的大小大于重力的大小,直杆对小球的弹力向下,F增大,则弹力增大,摩擦力增大,根据牛顿第二定律,小球的加速度减小,当加速度减小到零时,小球做匀速直线运动。故C正确。
[变式3-2] (2020·山西省运城市高三上期中调研)如图所示,质量为10 kg的环在F=200 N的拉力作用下,沿固定在地面上的粗糙长直杆由静止开始运动,杆与水平地面的夹角θ=37°,拉力F与杆的夹角也为θ。力F作用0.5 s后撤去,环在杆上继续上滑了0.4 s后速度减为零。(已知sin37°=0.6,cs37°=0.8,g=10 m/s2)求:(1)环与杆之间的动摩擦因数μ;(2)环沿杆向上运动的总距离s。
答案 (1)0.5 (2)1.8 m
解析 (1)设环做匀加速直线运动和匀减速直线运动的加速度大小分别为a1和a2,撤去力F瞬间环的速度为v,则由v=a1t1,0=v-a2t2,得a1t1=a2t2代入数据得2a1=1.6a2根据牛顿第二定律得Fcsθ-mgsinθ-μ(Fsinθ-mgcsθ)=ma1mgsinθ+μmgcsθ=ma2联立解得μ=0.5。
高考模拟 随堂集训
1.(2020·江苏高考)中欧班列在欧亚大陆开辟了“生命之路”,为国际抗疫贡献了中国力量。某运送防疫物资的班列由40节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节对第3节车厢的牵引力为F。若每节车厢所受摩擦力、空气阻力均相等,则倒数第3节对倒数第2节车厢的牵引力为( )
2. (2017·海南高考)(多选)如图,水平地面上有三个靠在一起的物块P、Q和R,质量分别为m、2m和3m,物块与地面间的动摩擦因数都为μ。用大小为F的水平外力推动物块P,设R和Q之间相互作用力与Q与P之间相互作用力大小之比为k。下列判断正确的是( )
3.(2020·湖北省七市州教科研协作体高三(下)5月联考)如图甲所示,A、B两个物体靠在一起,静止在光滑的水平面上,它们的质量分别为mA=1 kg、mB=3 kg,现用水平力FA推A,用水平力FB拉B,FA和FB随时间t变化关系如图乙所示,则( )A.A、B脱离之前,A所受的合力逐渐减小B.t=3 s时,A、B脱离C.A、B脱离前,它们一起运动的位移为6 mD.A、B脱离后,A做减速运动,B做加速运动
故C正确;A、B脱离后的1 s内,A仍然受到向右的推力,所以A仍然做加速运动,在t=3 s后,A不再受推力,将做匀速直线运动,物体B一直受到向右的拉力而做加速运动,故D错误。
(1)弹簧的劲度系数;(2)物块b加速度的大小;(3)在物块a、b分离前,外力大小随时间变化的关系式。
5.(2020·河北省邯郸市高三上期末)如图所示,AB是长为L1=40 m、倾角θ1=53°的倾斜轨道,BC是长为L2=44 m、倾角θ2=37°的倾斜轨道,CD为水平轨道,各轨道之间平滑连接。小物块从AB轨道的顶端A由静止下滑,小物块与各轨道间的动摩擦因数均为μ=0.5。已知sin37°=0.6,cs37°=0.8,重力加速度g取10 m/s2,求:
(1)小物块在AB段下滑的加速度大小;(2)为了保证小物块不滑离CD轨道,CD轨道至少多长?(3)小物块从开始下滑到停止全程所用的时间。
答案 (1)5 m/s2 (2)57.6 m (3)10.8 s
解析 (1)小物块从A到B,根据牛顿第二定律,有mgsinθ1-μmgcsθ1=ma1得小物块在AB段下滑的加速度大小a1=5 m/s2。
时间:60分钟 满分:100分一、选择题(本题共10小题,每小题7分,共70分。其中1~7题为单选,8~10题为多选)1.(2020·山东省泰安市模拟)下列说法正确的是( )A.体操运动员双手握住单杠吊在空中不动时处于失重状态B.蹦床运动员在空中上升和下落过程中都处于失重状态C.举重运动员在举起杠铃后不动的那段时间内处于超重状态D.游泳运动员仰卧在水面静止不动时处于失重状态
解析 体操运动员双手握住单杠吊在空中不动时处于静止状态,蹦床运动员在空中上升和下落过程中加速度都向下,都处于失重状态,A错误,B正确;举重运动员在举起杠铃后不动的那段时间内处于静止状态,游泳运动员仰卧在水面静止不动时处于静止状态,C、D错误。
2. (2020·辽宁省辽阳市高三(下)二模)如图所示,一轻绳绕过光滑的轻质定滑轮,一端挂一水平托盘,另一端被托盘上的人拉住,滑轮两侧的轻绳均沿竖直方向。已知人的质量为60 kg,托盘的质量为20 kg,取g=10 m/s2。若托盘随人一起竖直向上做匀加速直线运动,则当人的拉力与自身所受重力大小相等时,人与托盘的加速度大小为( )
A.5 m/s2 B.6 m/s2 C.7.5 m/s2 D.8 m/s2
解析 设人的质量为M,则轻绳的拉力大小T=Mg,设托盘的质量为m,对人和托盘整体,根据牛顿第二定律有2T-(M+m)g=(M+m)a,联立并代入数据解得a=5 m/s2,故A正确,B、C、D错误。
3. (2020·山西省八校高三上第一次联考)如图所示,材料相同的物体A、B由轻绳连接,质量分别为m1和m2,且m1≠m2,在恒定拉力F的作用下沿斜面向上加速运动。则( )A.轻绳拉力的大小与斜面的倾角θ有关B.轻绳拉力的大小与物体和斜面之间的动摩擦因数μ有关C.轻绳拉力的大小与两物体的质量m1和m2有关D.若改用F沿斜面向下拉连接体,轻绳拉力的大小不变
4. 如图所示,一质量为M的楔形木块A放在水平桌面上,它的顶角为90°,两底角分别为α和β;a、b为两个位于斜面上质量均为m的小木块,已知所有接触面都光滑,现发现a、b沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于( )A.Mg+mg B.Mg+2mgC.Mg+mg(sinα+sinβ) D.Mg+mg(csα+csβ)
解析 取a、b、A整体为研究对象,其竖直方向受力情况及系统内各物体运动状态如图所示。以竖直向上为正方向,在竖直方向上由牛顿第二定律得:FN-(M+2m)g=M·0+ma1y+ma2y。其中,a1y=-gsin2α,a2y=-gsin2β,得水平桌面对楔形木块的支持力FN=Mg+mg,由牛顿第三定律得A正确。
5.(2020·福建省漳州市二校高三上学期第一次联考)放在固定粗糙斜面上的滑块A以加速度a1沿斜面匀加速下滑,如图甲所示。在滑块A上放一物体B,物体B始终与A保持相对静止,以加速度a2沿斜面匀加速下滑,如图乙所示。在滑块A上施加一竖直向下的恒力F,滑块A以加速度a3沿斜面匀加速下滑,如图丙所示。则( )A.a1=a2=a3 B.a1
7.如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ。重力加速度为g,最大静摩擦力等于滑动摩擦力。要使纸板相对砝码运动,所需拉力的大小应大于( )A.3μmg B.4μmg C.5μmg D.6μmg
解析 当纸板相对砝码运动时,设砝码的加速度为a1,纸板的加速度为a2,根据牛顿第二定律,对砝码有f1=μ·2mg=2ma1,得a1=μg,对纸板有F-f1-f2=ma2,其中f2=μ·3mg,二者发生相对运动需要纸板的加速度大于砝码的加速度,即a2>a1,所以F=f1+f2+ma2>f1+f2+ma1=μ·2mg+μ·3mg+μmg=6μmg,即F>6μmg,D正确。
8. (2021·八省联考湖南卷)如图,三个质量均为1 kg的物体A、B、C叠放在水平桌面上,B、C用不可伸长的轻绳跨过一光滑轻质定滑轮连接,A与B之间、B与C之间的接触面以及轻绳均与桌面平行,A与B之间、B与C之间以及C与桌面之间的动摩擦因数分别为0.4、0.2和0.1,重力加速度g取10 m/s2,设最大静摩擦力等于滑动摩擦力。用力F沿水平方向拉物体C,以下说法正确的是( )A.拉力F小于11 N时,不能拉动CB.拉力F为17 N时,轻绳的拉力为4 NC.要使A、B保持相对静止,拉力F不能超过23 ND.A的加速度将随拉力F的增大而增大
解析 当物体C即将运动时,物体C在水平方向受到桌面给C的向右的摩擦力f桌、绳子向右的拉力T、B给C向右的摩擦力fBC,其中f桌=0.1(mA+mB+mC)g=3 N,fBC=0.2(mA+mB)g=4 N,当即将滑动时应有F=f桌+fBC+T,对A、B受力分析,可知T=fCB=fBC=4 N,可解得F=11 N,故A正确;因为绳子不可伸长,则B和C的加速度大小相等,在A和B即将发生相对滑动时,对A受力分析可得fBA=0.4mAg=mAa,对A、B整体受力分析可得T′-fCB=(mA+mB)a,对物体C受力分析可得F-T′-fBC-f桌=mCa,代入数据并联立解得F′=23 N,说明要使A和B保持相对静止,拉
力F不能超过23 N,故C正确;当F=17 N时,A、B没有发生相对滑动,此时对A、B整体有T″-fCB=(mA+mB)a1,对物体C受力分析可得F-T″-fBC-f桌=mCa1,联立解得T″=8 N,故B错误;A和B发生相对滑动时,若继续增大F,因物体A仅受到滑动摩擦力作用,加速度为a=0.4g=4 m/s2,则不变,D错误。
9.(2020·四川省攀枝花市高三(下)第三次统考)如图甲所示,物块A、B静止叠放在水平地面上,B受到大小从零开始逐渐增大的水平拉力F作用,A、B间的摩擦力f1、B与地面间的摩擦力f2随水平拉力F变化的情况如图乙所示,已知物块A的质量m=3 kg,重力加速度g取10 m/s2,最大静摩擦力等于滑动摩擦力,则( )A.物块B的质量为4 kgB.A、B间的动摩擦因数为0.2C.B与水平地面间的动摩擦因数为0.2D.当F=10 N时,A物块的加速度大小为1.5 m/s2
10.(2020·河南省六市高三(下)第二次联合调研检测)如图甲所示,在倾角为θ=30°的固定光滑斜面上,轻质弹簧下端固定在底端挡板上,另一端与质量为m的小滑块A相连,A上叠放另一个质量也为m的小滑块B,弹簧的劲度系数为k,初始时两滑块均处于静止状态。现用沿斜面向上的拉力F作用在滑块B上,使B开始沿斜面向上做加速度为a的匀加速运动,测得两个滑块的vt图像如图乙所示,重力加速度为g,则( )
二、非选择题(本题共2小题,共30分)11. (2021·河南省信阳市高三上12月调研)(15分)如图所示,在倾角为θ的足够长的固定斜面上,有一质量为M的长木板,长木板在沿斜面向上的拉力F作用下始终做速度为v的匀速运动。某时刻开始,将一质量为m的小铁块(可视为质点),以相对斜面向下的初速度v0从长木板的上端释放,小铁块沿长木板向下滑动,最终小铁块跟长木板一起沿斜面向上做匀速运动。已知v0>v,小铁块、木板和斜面相互间的动摩擦因数均为μ,μ>tanθ,重力加速度为g。求:
(1)小铁块从开始滑动到离斜面底端最近时经历的时间;(2)从释放铁块到共速时长木板沿斜面向上运动的距离和长木板的最短长度。
12.(2021·八省联考福建卷)(15分)如图,上表面光滑且水平的小车静止在水平地面上,A、B为固定在小车上的挡板,C、D为竖直放置的轻质薄板。A、C和D、B之间分别用两个相同的轻质弹簧连接,薄板C、D间夹住一个长方体金属块(视为质点)。金属块与小车上表面有一定的距离并与小车保持静止,此时金属块所受到的摩擦力为最大静摩擦力。已知金属块的质量m=10 kg,弹簧劲度系数k=1000 N/m,金属块和薄板C、D间动摩擦因数μ=0.8。设金属块受到的最大静摩擦力与滑动摩擦力相等,取重力加速度g=10 m/s2。求:
(1)此时弹簧的压缩量;(2)当小车、金属块一起向右加速运动,加速度大小a=15 m/s2时,A、C和D、B间弹簧形变量及金属块受到的摩擦力大小。
答案 (1)0.0625 m (2)0.15 m 0 100 N
解析 (1)由于两个轻质弹簧相同,则两弹簧压缩量相同。设弹簧的压缩量为x0,弹簧形变产生的弹力大小为F,由胡克定律得F=kx0设金属块所受C、D的摩擦力大小均为f,此时金属块所受摩擦力等于最大静摩擦力,依题意得f=μF由平衡条件得2f=mg联立并代入数据得x0=0.0625 m。
(2)假设A、C和D、B间的弹簧压缩量分别为x1和x2,有x1+x2=2x0水平方向,对金属块由牛顿第二定律得kx1-kx2=ma代入题给数据得x1=0.1375 m,x2=-0.0125 m由x2<0可知,此时薄板D已与金属块分离,D、B间弹簧已恢复原长,无弹力。金属块水平方向加速运动所需的合力全部由薄板C的弹力提供。设A、C和D、B间弹簧实际压缩量分别为x1′、x2′,则x2′=0,水平方向,对金属块由牛顿第二定律得kx1′=ma代入数据解得x1′=0.15 m由于此时最大静摩擦力f′max=μkx1′=120 N>mg故金属块受到的摩擦力大小为f′=mg=100 N。
高中物理高考 2020年物理高考大一轮复习第3章牛顿运动定律第9讲牛顿运动定律的综合应用课件: 这是一份高中物理高考 2020年物理高考大一轮复习第3章牛顿运动定律第9讲牛顿运动定律的综合应用课件,共60页。PPT课件主要包含了第三章,牛顿运动定律,第9讲,板块一,等于零,不等于,板块二,答案BC,板块三等内容,欢迎下载使用。
高考物理一轮复习练习课件第3章牛顿运动定律第9讲牛顿运动定律的综合应用 (含详解): 这是一份高考物理一轮复习练习课件第3章牛顿运动定律第9讲牛顿运动定律的综合应用 (含详解),共60页。PPT课件主要包含了第9讲,板块一,等于零,不等于,板块二,答案BC,板块三等内容,欢迎下载使用。
人教版高考物理一轮总复习第3章第2讲牛顿运动定律的综合应用课件: 这是一份人教版高考物理一轮总复习第3章第2讲牛顿运动定律的综合应用课件,共60页。PPT课件主要包含了必备知识·落实基础性,关键能力·提升综合性,点击右图进入等内容,欢迎下载使用。