搜索
    上传资料 赚现金
    英语朗读宝

    题型五 数列 ——2023届高考数学高频题型专项讲解

    题型五 数列 ——2023届高考数学高频题型专项讲解第1页
    题型五 数列 ——2023届高考数学高频题型专项讲解第2页
    题型五 数列 ——2023届高考数学高频题型专项讲解第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    题型五 数列 ——2023届高考数学高频题型专项讲解

    展开

    这是一份题型五 数列 ——2023届高考数学高频题型专项讲解,共6页。学案主要包含了思路分析,考纲要求,方法技巧等内容,欢迎下载使用。
    题型 数列一、思路分析数列的概念和递推公式是高考的热点,主要考查已知递推关系求通项公式的关系求通项公式利用数列的性质求最值等,主要以填空题、解答题的形式呈现,难度中等.等差数列是高考的重点考查知识,主要考查等差数列的基本运算和性质,等差数列的通项公式和前n项和公式等,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题,要善于运用函数与方程思想和整体带思想解决有关等差数列问题,同时要注意探索创新和生活实践情境载体下的试题训练.等比数列是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n项和公式,尤其要注意证明题或以数学文化为背景的数列题,考查题型既有选择题、填空题,也有解答题,难度中等,要会运用函数与方程思想、转化与化归思想和分类讨论思想解题,也要注意探索创新和生活实践情境载体下的试题训练.数列求和及数列综合应用是高考的热点题型,其中等差、等比数列的通项与求和,数列与函数、不等式的综合,以数学文化为背景的数列题是高考命题的热点,多以解答题的形式呈现,难度中等,要注重常规考法,也要注重数列与其他知识的综合创新,同时也要注重对结构不良类试题的训练.、考纲要求1.数列的概念和递推公式1了解数列的概念表示方法,理解数列的通项公式的意义.
    2理解数列的递推公式,能根据递推公式写出数列的前几.
    3理解的关系.
    2.等差数列1理解等差数列的概念和通项公式的意义.
    2掌握等差数列的前n项和公式,理解等差数列的通项公式与前n项和公式的关系.
    3)了解等差数列与一次函数的关系.
     3.等比数列1)理解等比数列的概念和通项公式的意义
    2)掌握等比数列的前n项和公式,理解等比数列的通项公式与前n项和公式的关系.
    3)了解等比数列与指数函数的关系.
    4.数列求和及数列综合应用1)掌握几种常用的数列求和方法.2)掌握数列的综合应用.
    方法技巧1.由前几项归纳数列通项公式的常用方法及具体策略:
    1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.
    2)具体策略:①分式中分子、分母的特征;
    ②相邻项的变化特征;
    ③各项的符号特征和绝对值特征;
    ④对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;
    ⑤对于符号交替出现的情况,可用处理.
    2.等差数列前n项和的最值求解得常用方法1)通项公式法:其基本思想是通过通项公式求出符号变化的项,从而求得和的最值;2)前n项和法:其基本思想是利用前n项和公式的二次函数特性,借助抛物线的图象求最值. 3.利用等差数列前n项和解决实际问题的步骤:1)判断问题中涉及的数列是否为等差数列;
    2)若是等差数列,找出首项、公差、项数;
    3)确认问题是求还是
    4)选择恰当的公式计算并转化为实际问题的解. 4.解决等差数列前n项和的基本运算题的思路方法及注意事项:1)注意公式的选择使用;
    2)等差数列的通项公式及前n项和公式,共涉及五个量已知其中三个就能求另外两个,注意方程思想的应用;
    3)数列的通项公式和前n项和公式在解题中起到变量代换的作用,而d是等差数列的两个基本量,用它们表示已知量和未知量是常用方法,同时注意灵活应用等差数列的性质以简化计算过程. 5.应用等比数列通项公式解实际应用问题的步骤1)构建等比数列模型;
    2)明确qn等基本量;
    3)利用求解;
    4)还原为实际问题. 6.判定数列是等比数列的常用方法:1)定义法:验证q为常数且不为0)是否成立,但应注意必须从第二项(即起所有项都满足此等式;
    2)等比中项法:验证是否成立;
    3)通项公式法:验证是否成立,但应注意隐含条件是. 7.解决等比数列前n项和的实际应用问题的基本步骤1)将已知条件翻译成数学语言,将实际问题转化为数学问题;
    2)构建等比数列模型;
    3)利用等比数列的前n项和公式求解等比数列问题;
    4)将所求结果还原到实际问题中. 8.等比数列基本运算中的常用技巧:
    1(对称设元)一般地,若连续奇数个项成等比数列,则可设该数列为若连续偶数个项成等比数列,则可设该数列为注意:此时公比,并不适合所有情况.这样既可减少未知量的个数,也使得解方程较为方便.
    2求解等比数列基本量时注意运用整体思想、设而不求等,同时还要注意合理运用. 9.用错位相减法解决数列求和问题的步骤:
    1)判断结构:若数列是由等差数列与等比数列公比q)的对应项之积构成的,则可用此法求和;
    2乘公比:设的前n项和为,然后两边同乘以q3错位相减:乘以公比q后,向后错开一位,使含有的项对应,然后两边同时作差;
    4求和:将作差后的结果求和,从而表示出. 10.利用裂项相消法求和的基本步骤
    1)裂项:观察数列的通项,将通项拆成两项之差的形式;
    2)累加:将数列裂项后的各项相加
    3)消项:将中间可以消去的项相互抵消,将剩余的有限项相加,得到数列的前n项和.

    11.解决数列不等式综合问题的一般步骤
    1)由已知条件和数列性质求基本量,确定数列的特性(等差或等比数列);
    2)求出的通项公式;
    3)分析涉及的函数或不等式,利用相关函数或不等式性质解决题目中的问题;
    4得出结果,叙述完整;
    5回顾反思,查验“n”的取值是否符合要求,运算过程是否有不当之处.
    12.数列与不等式的综合问题的解题策略
    1)判断数列问题中的一些不等关系,可以利用数列的单调性或者是借助数列对应的函数的单调性求解.
    2)对于与数列有关的不等式的证明问题,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等,有时需构造函数,利用函数的单调性,最值来证明.
    13.数列与函数的综合问题的解题策略
    1)已知函数条件,解决数列问题,一般利用函数的性质、图象等进行研究.
    2)已知数列条件,解决函数问题,一般要充分利用数列的有关公式对式子化简变形.
    3)解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解.

    14.数列在实际应用中的常见模型
    1)等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差.
    2)等比模型:如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比.
    3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n与第(或者相邻三项等)之间的递推关系还是前n项和与前项和之间的递推关系.
    15.解答数列实际应用题的步骤
    1)审题:仔细阅读题目,认真理解题意.
    2)建模:将已知条件翻译成数列语言,将实际问题转化成数学问题,分清数列是等差数列、等比数列,还是递推数列,是求通项还是求前n项和.
    3)求解:求出该问题的数学解.
    4)还原:将所求结果还原到实际问题中. 

    相关学案

    题型一 数学通用基础——2023届高考数学高频题型专项讲解:

    这是一份题型一 数学通用基础——2023届高考数学高频题型专项讲解,共4页。学案主要包含了思路分析,考纲要求,方法技巧等内容,欢迎下载使用。

    题型四 平面向量——2023届高考数学高频题型专项讲解:

    这是一份题型四 平面向量——2023届高考数学高频题型专项讲解,共4页。学案主要包含了思路分析,考纲要求,方法技巧等内容,欢迎下载使用。

    题型三 三角函数与解三角形 ——2023届高考数学高频题型专项讲解:

    这是一份题型三 三角函数与解三角形 ——2023届高考数学高频题型专项讲解,共5页。学案主要包含了思路分析,考纲要求,方法技巧等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map