|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省苏州中学2022-2023学年高一数学上学期期中试题(Word版附解析)
    立即下载
    加入资料篮
    江苏省苏州中学2022-2023学年高一数学上学期期中试题(Word版附解析)01
    江苏省苏州中学2022-2023学年高一数学上学期期中试题(Word版附解析)02
    江苏省苏州中学2022-2023学年高一数学上学期期中试题(Word版附解析)03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省苏州中学2022-2023学年高一数学上学期期中试题(Word版附解析)

    展开
    这是一份江苏省苏州中学2022-2023学年高一数学上学期期中试题(Word版附解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省苏州中学2022-2023学年度第一学期期中考试

    高一数学

    本试卷分第卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分钟.

    卷(选择题,共60分)

    一、选择题:本题共8小题,每小题5分,共40.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 已知集合,则   

    A.  B.

    C.  D.

    【答案】C

    【解析】

    【分析】利用指数函数图象可得根据一元二次不等式可得,进而求出.

    【详解】

    故选:C.

    2. 已知命题是假命题,则实数的取值范围是(   

    A.  B.  C.  D.

    【答案】D

    【解析】

    【分析】根据一元二次不等式恒成立求解实数的取值范围.

    【详解】由题意得是真命题,即

    时,符合题意;

    时,有,且,解得.

    综上所述,实数的取值范围是.

    故选:D.

    3. 已知函数的定义域为,则函数的定义域是   

    A.  B.

    C.  D.

    【答案】D

    【解析】

    【分析】根据抽象函数和具体函数的定义域可得出关于的不等式组,由此可解得函数的定义域.

    【详解】因为函数的定义域为,对于函数

    则有,解得.

    因此,函数的定义域为.

    故选:D.

    4. 已知函数a0a≠1)的图象恒过定点A,若点A的坐标满足关于的方程,则的最小值为(   

    A. 9 B. 24 C. 4 D. 6

    【答案】C

    【解析】

    【分析】由题意可得,利用基本不等式求最值即可.

    【详解】因为函数图象恒过定点

    又点A的坐标满足关于的方程

    所以,即

    所以

    ,当且仅当时取等号;

    所以的最小值为4

    故选:C

    5. 已知关于的不等式的解集为,则的值为(   

    A.  B.  C.  D.

    【答案】B

    【解析】

    【分析】分析可知,且为方程的两根,分类讨论,求出的值,即可得解.

    【详解】因为关于的不等式的解集为,则

    而方程的两根分别为.

    ,无解;若,解得.

    因此,.

    故选:B.

    6. 若不等式对一切都成立,则a的最大值为(  )

    A. 0 B. 2 C. 3 D.

    【答案】D

    【解析】

    【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.

    【详解】因为不等式对一切恒成立,

    所以对一切,即恒成立.

    易知内为减函数.所以

    ,所以的最大值是

    故选:D

    7. 已知函数 .若,则实数的取值范围是(    ).

    A.  B.

    C.  D.

    【答案】D

    【解析】

    【分析】解不等式,将问题转化为,进而作出函数的图像,数形结合求解即可.

    【详解】解:当时,,解得

    时,,解得

    所以,当时,

    时,;令时,;令时,

    所以,作出函数的图像如图,

    时,实数的取值范围是.

    故选:D

    8. 已知函数.若存在,使得,则实数a的取值范围是(   

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】先求出值域,由题意可知,由此即可求解

    【详解】时单调递增函数,

    的值域是

    的对称轴是,在上,函数单调递减,

    的值域是

    因为存在,使得

    所以,

    ,则

    解得

    所以当时,

    故选:A

    二、选择题:本题共4小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2.

    9. 下列命题为真命题的是(   

    A. ,则

    B. ,则

    C. ,则

    D. ,则

    【答案】BCD

    【解析】

    【分析】根据已知条件,结合特殊值法和作差法,即可依次求解.

    【详解】对于A,当时,,故A为假命题,

    对于B

    ,故B为真命题,

    对于C

    ,即

    ,故C为真命题,

    对于D

    时,取得最小值为,且

    D为真命题.

    故选:BCD

    10. (多选)下列关于函数的结论正确的是(   

    A. 单调递增区间是 B. 单调递减区间是

    C. 最大值为2 D. 没有最小值

    【答案】AC

    【解析】

    【分析】先求的定义域排除选项B,再利用一元二次函数的性质与复合函数的单调性求得的单调性,进而求其最值.

    【详解】要使函数有意义,则,得,故B错误;

    函数复合而成,

    时,单调递增,当时,单调递减,

    上单调递增,

    所以上单调递增,在上单调递减,

    ,又,所以,故AC正确,D错误.

    故选:AC.

    11. ,则下列关系正确的是(   

    A.  B.  C.  D.

    【答案】AD

    【解析】

    【分析】构造函数,利用函数的单调性可得出的大小关系,利用函数的单调性、中间值法可判断各选项的正误.

    【详解】,得,令,则

    因为上都是增函数,所以上是增函数,

    所以,故A正确;

    因为上都单调递减,

    所以当时,,故B错误;

    时,无意义,故C错误;

    因为上是减函数,且,所以,即,故D正确.

    故选:AD

    12. 已知定义在R上的奇函数满足,且当时,,则(   

    A. 关于x的方程在区间上的所有实数根的和为

    B. 关于x的方程在区间上的所有实数根的和为

    C. 若函数的图象恰有5个不同的交点,则

    D. 若函数的图象恰有5个不同的交点,则

    【答案】AC

    【解析】

    【分析】根据所给函数性质作出函数的大致图象,利用函数图象,数形结合求解即可.

    【详解】定义在R上的奇函数满足

    所以,所以,即函数的周期

    又函数为定义在R上的奇函数,所以

    ,所以函数关于对称,

    时,,解得,作函数的大致图象,如图,

     

     

    由图可知方程在区间上的所有实数根的和为,故A正确,B错误;

    若函数的图象恰有5个不同的交点,

    时,由图象可知,直线过点时,即时,满足题意,

    时,找出两个临界情况,当直线时,,有3个交点

    当直线时,3个交点,

    由图象知,当时,直线的图象有5个交点.

    综上,当时,函数的图象恰有5个不同的交点,故C正确D错误.

    故选:AC

    (非选择题,共90分)

    三、填空题:本题共4小题,每小题5分,共20.

    13. 化简___________.

    【答案】##1.6

    【解析】

    【分析】先将根式化为分数指数幂,然后由幂的运算化简可得.

    【详解】

    故答案为:

    14. 已知,且,那么___________

    【答案】

    【解析】

    【分析】,得到,且求得,进而求得的值,得到答案.

    详解】,则

    易得定义域为R,又

    所以函数为奇函数,

    又因为,即,可得,所以

    .

    故答案为:.

    15. 已知,若,则的最小值为_____________.

    【答案】4

    【解析】

    【分析】因为,将化为,利用基本不等式,转化为关于的一元二次不等式解决.

    【详解】因为,且,所以,即,化简得,

    解得:,因为,所以,当且仅当时,取“=”,所以的最小值为4.

    故答案为:4

    16. 已知函数,若存在实数同时满足,则实数的取值范围为___________.

    【答案】

    【解析】

    【分析】根据奇偶性定义求得为奇函数,从而可得,从而可将整理为:,令,则有解,通过求解函数的值域可得到的取值范围.

    【详解】的定义域是,且

     上的奇函数,

     

     

    有解,

     有解,

    ,则有解,

    ,则

    上单调递增,

     

    所以

    所以实数的取值范围为

    故答案为:

    四、解答题:本题共6小题,共70.解答应写出文字说明、证明过程或演算步骤.

    17. 已知集合

    1,求

    2若存在正实数,使得成立的          ,求正实数的取值范围.

    ①充分不必要条件,②必要不充分条件中任选一个,填在上面空格处,补充完整该问题,并进行作答.

    【答案】1   

    2答案见解析

    【解析】

    【分析】1)分别求解两个集合,再求并集;

    2)若选①,则的真子集.若选②,则的真子集,根据集合的包含关系,列不等式,即可求解的取值范围.

    【小问1详解】

    ,则

    时,,所以

    【小问2详解】

    选①  成立的充分不必要条件,则的真子集.

    所以.经检验“=”满足.

    所以实数的取值范围是

    选②  因为成立的必要不充分条件

    所以的真子集.

    所以,经检验“=”满足.

    所以实数的取值范围是

    18. 定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m,n∈R恒成立,当x>0时,f(x)>2.

    (1)证明:f(x)在R上是增函数,

    (2)已知f(1)=5,解关于t的不等式f(t-1)≤8.

    【答案】(1)见解析;(2)

    【解析】

    【分析】(1) 根据定义判断函数单调性的步骤判断即可.

    (2) 根据f(1)=5,利用表达式求得f(2)=8,将不等式化为f(t-1)≤f(2).,进而根据函数的单调性即可求得t的范围.

    【详解】(1)任取x1,x2R,且x1<x2,则x2-x1>0.

    f(x2-x1)>2,

    f(x1)-f(x2)

    =f(x1)-f(x2-x1+x1)

    =f(x1)-f(x2-x1)-f(x1)+2

    =2-f(x2-x1)<0.

    f(x1)<f(x2),

    f(x)R上是增函数.

    (2)f(1)=5,

    f(2)=f(1)+f(1)-2=8.

    f(t-1)≤8f(t-1)≤f(2).

    f(x)R上为增函数,

    t-1≤2,即t≤3.

    ∴不等式解集为{t|t≤3}.

    【点睛】本题考查了利用定义判断函数的单调性根据函数的单调性解相关的不等式问题,属于基础题.

    19. 已知函数,其中a为实数.

    1时,求函数的最小值;

    2上单调递增,求实数a的取值范围.

    【答案】1   

    2.

    【解析】

    【分析】1)首先去绝对值,表示为分段函数,再分别求两段的最小值,即可求函数的最小值;

    2)分三种情况讨论函数的单调性,再根据函数在区间上单调递增,列式求实数的取值范围.

    【小问1详解】

    时,

    ,此时当时函数取得最小值

    时,函数的值域是

    所以函数的最小值是

    小问2详解】

    时,,不满足函数在单调递增;

    时,单调递增,也是单调递增函数,且在处连续,所以函数在上单调递增,符合题意;

    时,函数在,在单调递增,若上单调递增,所以,得

    综上可知,的取值范围是.

    20. 为响应国家扩大内需的政策,某厂家拟在2021年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用万元满足k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2021年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).

    1)将该厂家2021年该产品利润y万元表示为年促销费用t万元的函数;

    2)该厂家2021年的年促销费用投入多少万元时厂家利润最大?

    【答案】1;(2)该厂家2021年的年促销费用投入2.5万元时,厂家利润最大.

    【解析】

    【分析】1)根据题意,当时,x=1,进而代入已知等式解出k,然后求出每件产品的销售价格,最后得到函数的解析式;

    2)根据(1)中的式子,结合基本不等式即可得到答案.

    【详解】1)由题意,当时,x=1,则,于是,所以.

    2)由(1),

    当且仅当“=”成立.

    所以,该厂家2021年的年促销费用投入2.5万元时,厂家利润最大.

    21. 已知定义在上的函数是奇函数.

    1)求的值:

    2)当时,不等式恒成立,求实数的取值范围.

    【答案】1;(2.

    【解析】

    【分析】

    1)由题意利用函数的奇偶性的性质,求出的值.

    2)根据题意转化为恒成立,进而转化为恒成立,再根据函数在区间上是减函数,求出的值,可得的范围.

    【详解】(1)因为函数是定义在上的奇函数,

    可得,解得,所以

    又由,可得,解得

    所以函数的解析式为.

    2)不等式恒成立,即恒成立,

    因为,可得,所以

    ,则

    .

    所以恒成立,

    ,则函数在区间上是减函数,

    因为,所以.

    即实数的取值范围.

    【点睛】对于利用导数研究不等式的恒成立问题的求解策略:

    1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;

    2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.

    3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.

    22. 已知函数.

    1求函数的值域;

    2),求的最大值

    3对于(2)中的,若上恒成立,求实数m的取值范围.

    【答案】1   

    2   

    3.

    【解析】

    【分析】1)先求定义域,进而先求出的范围,最后求出函数的值域;

    2)求出,设,进而讨论函数的最大值,然后讨论a与定义域的位置关系,最后得出答案;

    3)将问题转化为上恒成立,进而讨论m为0和不为0两种情况,最后求得答案.

    【小问1详解】

    ,得

    ,且

    ,则函数的值域为

    【小问2详解】

    所以

    ,则为函数的最大值.

    易得函数的图象是开口向下的抛物线,且其对称轴为直线

    ①若,即,则

    ②若,即,则

    ③若,即,则   

    综上可得

    【小问3详解】

    由(2)易得

    要使上恒成立,即使恒成立,

    所以上恒成立.   

    ,则对任意恒成立;

    ,则有,即

    解得

    综上,实数m的取值范围是

    【点睛】关键点点睛:本题对的处理是一个关键点,这时候需要找到三个根式之间的关系,在通过(1)问的处理之后可以发现将平方可以得到,进而通过换元法进行处理.

    相关试卷

    2022-2023学年江苏省苏州市常熟中学高一上学期期中数学试题(解析版): 这是一份2022-2023学年江苏省苏州市常熟中学高一上学期期中数学试题(解析版),共14页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    江苏省苏州市2022-2023学年高二数学上学期期末调研试题(Word版附解析): 这是一份江苏省苏州市2022-2023学年高二数学上学期期末调研试题(Word版附解析),共19页。试卷主要包含了01,直线的倾斜角是,已知数列,且,记其前项和为,在写生课上,离身高1等内容,欢迎下载使用。

    江苏省苏州市常熟中学2022-2023学年高二数学上学期1月调研试题(Word版附解析): 这是一份江苏省苏州市常熟中学2022-2023学年高二数学上学期1月调研试题(Word版附解析),共10页。试卷主要包含了已知各项均为正数的等比数列,则,抛物线上一点到其对称轴的距离为,直线被圆截得的弦长等于,下列结论错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map