年终活动
搜索
    上传资料 赚现金

    贵州省遵义市2021-2022学年高一数学上学期期末试题(Word版附解析)

    立即下载
    加入资料篮
    贵州省遵义市2021-2022学年高一数学上学期期末试题(Word版附解析)第1页
    贵州省遵义市2021-2022学年高一数学上学期期末试题(Word版附解析)第2页
    贵州省遵义市2021-2022学年高一数学上学期期末试题(Word版附解析)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省遵义市2021-2022学年高一数学上学期期末试题(Word版附解析)

    展开

    这是一份贵州省遵义市2021-2022学年高一数学上学期期末试题(Word版附解析),共14页。试卷主要包含了 已知集合,,则, 命题“,是4的倍数”的否定为, 函数的大致图象是, 已知,则, 下列函数中,为偶函数的是等内容,欢迎下载使用。
    2021~2022学年秋季高一期末考试数学一、选择题:本题共8小题,每小题5分,共40.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则    A.  B.  C.  D. 【答案】A【解析】【分析】求出集合B,再根据交集的定义即可得解.【详解】解:因为,所以故选:A.2. 命题4的倍数的否定为(    A. 4的倍数 B. 不是4的倍数C. 不是4的倍数 D. 不是4的倍数【答案】B【解析】【分析】根据特称量词命题的否定是全称量词命题即可求解.【详解】因为特称量词命题的否定是全称量词命题,所以命题4的倍数的否定为不是4的倍数故选:B3. 某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:9098100108111115115125.则这组数据的分位数是(    A. 100 B. 111 C. 113 D. 115【答案】D【解析】【分析】根据第p百分位数的定义直接计算,再判断作答.【详解】知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D4. 已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:12456123.13615.55210.88-52.488-232.064在以下区间中,一定有零点的是(    A. 12 B. 24 C. 45 D. 56【答案】C【解析】【分析】由表格数据,结合零点存在定理判断零点所在区间.【详解】,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点.故选:C.5. 幂函数上单调递增的(    A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】【分析】由幂函数的概念,即可求出,再根据均满足上单调递增以及充分条件、必要条件的概念,即可得到结果.【详解】为幂函数,则,解得都满足上单调递增.幂函数上单调递增的充分不必要条件.故选:A.6. 函数的大致图象是(    A.  B. C.  D. 【答案】D【解析】【分析】利用排除法判断,先由函数的奇偶性分析,再取特殊值分析【详解】因为所以是偶函数,排除B.因为,排除AC.故选:D.7. 已知,则(    A.  B.  C.  D. 【答案】A【解析】【分析】根据给定条件利用指数函数、对数函数单调性,借助媒介数比较大小作答.【详解】函数上都是单调递减的,,则,又,则R上单调递增,则所以.故选:A8. 尽管目前人类还无法精准预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级之间的关系式为日,日本东北部海域发生里氏级地震,它所释放出来的能量是日我国四川九寨沟县发生里氏级地震的(    A.  B.  C.  D. 【答案】C【解析】【分析】设里氏级和级地震释放出的能量分别为,可得出,利用对数的运算性质可求得的值,即可得解.【详解】设里氏级和级地震释放出的能量分别为,由已知可得,故故选:C.二、多选题:本题共4小题,每小题5分,共20.在每小题给出的四个选项中,有多个选项是符合题目要求的.全部选对得5分,部分选对得2分,有选错的得0.9. 下列函数中,为偶函数的是(    A.  B.  C.  D. 【答案】AB【解析】【分析】根据奇偶函数的定义,可逐项判断,即可得答案.【详解】函数满足 ,故为偶函数,A正确;函数满足 ,故为偶函数,B正确;函数满足 ,故为奇函数;函数需满足 ,故既不是奇函数也不是偶函数,故选:AB10. 分别投掷两枚质地均匀的骰子,设事件A两枚骰子的点数都是奇数,事件B两枚骰子的点数之和为奇数,事件C两枚骰子的点数之和为偶数,事件D两枚骰子的点数都是偶数,则    A. AB为互斥事件 B. AC为互斥事件C. BC为对立事件 D. AD为对立事件【答案】AC【解析】【分析】题目考察互斥事件和对立事件的定义,不会同时发生的即为互斥事件,对立事件是不会同时发生且两件事包含了所有事件的可能性【详解】投掷两枚质地均匀的骰子,共有三种情况,一奇一偶,两个奇数或两个偶数,选项A中,事件B两枚骰子的点数之和为奇数则说明是一奇一偶,与事件A没有重叠,所以是互斥事件,选项A正确;选项B中,事件A发生时,事件C同时发生,所以不是互斥事件,选项B错误;选项C中,两枚骰子点数之和只有两种情况,奇数或者偶数,所以BC为对立事件,选项C正确;选项D中,两枚骰子除了都是奇数或者都是偶数,还有可能一奇一偶,所以不是对立事件,选项D错误故选:AC11. 根据2021年年初国家统计局发布的数据显示,我国2020年完成邮政行业业务总量21053亿元,比上年增长29.7%.快递业务量833.6亿件,快递业务收入8795亿元.下图为2016—2020年快递业务量及其增长速度,根据该统计图,下列说法正确的是(    A. 2016—2020年,我国快递业务量持续增长B. 2016—2020年,我国快递业务量增长速度持续下降C. 预计我国2021年快递业务量将持续增长D. 估计我国2015年的快递业务量少于210亿件【答案】ACD【解析】【分析】根据统计图对业务量和增长速度的数据进行分析可得.【详解】根据统计图可得,2016—2020年,我国快递业务量持续增长,A正确.2016—2019年,我国快递业务量增长速度持续下降,但2019—2020年,我国快递业务量增长速度上升,B错误.2017—2020年,我国快递业务量增长速度比较平稳,且保持在较高水平,可以预测我国2021年快递业务量将持续增长,C正确.设我国2015年的快递业务量为亿件,则D正确.故选:ACD12. 已知函数函数有四个不同的零点,且,则(    A. 的取值范围是 B. 的取值范围是C.  D. 【答案】AC【解析】【分析】结合的图象,由图可知,由二次函数的对称性,可得,可得答案.【详解】有四个不同的零点,即方程有四个不同的解. 的图象如图所示,由图可知,所以的取值范围是由二次函数对称性,可得.因为,所以,故故选:AC.三、填空题:本题共4小题,每小题5分,共20.把答案填在答题卡中的横线上.13. ___________.【答案】2【解析】【分析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:14. 写出一个同时具有下列三个性质的函数:___________.函数为指数函数;单调递增;.【答案】(答案不唯一)【解析】【分析】根据给定条件可得函数的解析式,再利用另两个条件判断作答.【详解】因函数是指数函数,则令,于是得由于单调递增,则,又,解得,取所以.故答案为:(答案不唯一)15. 已知一组数据的平均数,方差,则另外一组数据的平均数为___________,方差为___________.【答案】    ①. 32    ②. 135【解析】【分析】由平均数与方差的性质即可求解.【详解】由题意,数据的平均数为,方差为.故答案为:16. 已知正数ab满足,则的最小值为______【答案】##【解析】【分析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,,当且仅当时,等号成立.故答案为:四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17. 已知集合1)求2)若,求m的取值范围.【答案】1    2【解析】【分析】1)先求得集合A,再由集合的补集运算和交集运算可求得答案;2)根据条件建立不等式组,可求得所求的范围.【小问1详解】因为所以小问2详解】因为,所以解得.故m的取值范围是18. 已知函数.1)判断在区间上的单调性,并用定义证明;2)判断奇偶性,并求在区间上的值域.【答案】1函数在区间上单调递增,证明见解析    2函数为奇函数,在区间上的值域为【解析】【分析】1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,且.因为,且,所以.于是,即.在区间上单调递增.【小问2详解】的定义域为.,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,所以在区间上的值域为.19. 已知函数(1)求函数的定义域;(2)试讨论关于x的不等式的解集.【答案】1    2答案见解析【解析】【分析】1)解不等式得出定义域;2)利用对数函数的单调性解不等式得出解集.【小问1详解】由题意可得解得.故函数的定义域为【小问2详解】时,函数是增函数.因为,所以解得.当时,函数是减函数.因为,所以解得综上,当时,原不等式的解集为;当时,原不等式的解集为20. 某学校对高一某班的名同学的身高(单位:)进行了一次测量,将得到的数据进行适当分组后(每组为左闭右开区间),画出如图所示的频率分布直方图.1)求直方图中的值,估计全班同学身高的中位数;2)若采用分层抽样的方法从全班同学中抽取了名身高在内的同学,再从这名同学中任选名去参加跑步比赛,求选出的名同学中恰有名同学身高在内的概率.【答案】1,中位数为    2【解析】【分析】1)利用频率分布直方图中所有矩形的面积之和为可求得的值,设中位数为,利用中位数左边的矩形面积之和为列等式可求得的值;2)分析可知所抽取的名学生,身高在的学生人数为,分别记为,身高在的学生人数为,记为,列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由图可得,解得.设中位数为,前两个矩形的面积之和为前三个矩形的面积之和为,可知所以,,解得故估计全班同学身高的中位数为.【小问2详解】解:所抽取的名学生,身高在的学生人数为身高在的学生人数为设身高在内的同学分别为,身高在内的同学为则这个试验的样本空间可记为,共包含个样本点,记事件选出的名同学中恰有一名同学身高在.则事件包含的基本事件有,共种,故.21. 某产品在出厂前需要经过质检,质检分为2个过程.第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程.第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为,且每位质检员的检验结果相互独立.1)求产品需要进行第2个过程的概率;2)求产品不可以出厂的概率.【答案】1    2【解析】【分析】1)分在第1个过程中,12位质检员检验结果为合格两种情况讨论,根据相互独立事件及互斥事件的概率公式计算可得;2)首先求出在第1个过程中,3位质检员检验结果均为不合格的概率,再求出产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率,最后根据互斥事件的概率公式计算可得;【小问1详解】解:记事件A产品需要进行第2个过程在第1个过程中,1位质检员检验结果为合格的概率在第1个过程中,2位质检员检验结果为合格的概率【小问2详解】解:记事件B产品不可以出厂在第1个过程中,3位质检员检验结果均为不合格概率产品需要进行第2个过程,在第2个过程中,产品不可以出厂的概率22. 已知函数1)若是偶函数,求a的值;2)若对任意,不等式恒成立,求a的取值范围.【答案】10    2【解析】【分析】1)由偶函数的定义得出a的值;2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围.【小问1详解】因为是偶函数,所以,故【小问2详解】由题意知上恒成立,,又因为,所以.令,则可得又因为,当且仅当时,等号成立,所以,即a的取值范围是

    相关试卷

    贵州省遵义市2023-2024学年高三数学上学期第一次质量监测(Word版附解析):

    这是一份贵州省遵义市2023-2024学年高三数学上学期第一次质量监测(Word版附解析),共9页。试卷主要包含了 若,则, 若,则的大小关系为, 下列说法正确的是, 对于任意实数,函数满足等内容,欢迎下载使用。

    贵州省遵义市2023-2024学年高一数学上学期10月月考试题(Word版附解析):

    这是一份贵州省遵义市2023-2024学年高一数学上学期10月月考试题(Word版附解析),共18页。试卷主要包含了本试卷主要考试内容等内容,欢迎下载使用。

    贵州省遵义市2022-2023学年高二数学下学期期末质量监测试题(Word版附解析):

    这是一份贵州省遵义市2022-2023学年高二数学下学期期末质量监测试题(Word版附解析),共17页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map