数学九年级上册22.3 实际问题与二次函数导学案
展开九年级数学上册《22.3二次函数的应用》导学案
1、理解题意,分析问题中的数量关系,能根据数量关系列出关系式
2、分析题目求的是最大值(或最小值)问题,学会用配方法来解决实际问题
重点:根据数量关系列出关系式;根据图象,结合所求解析式解决问题;根据题意或者图象来确定自变量的取值范围
难点:用配方法确定最值问题时,要结合具体情境中自变量的取值范围来确定
实物抛物线 | ① 根据题意,结合函数图象求出函数解析式; ② 确定自变量的取值范围; ③ 根据图象,结合所求解析式解决问题. |
实际问题中求最值 | ①分析问题中的数量关系,列出函数关系式; ②研究自变量的取值范围; ③确定所得的函数; ④检验x的值是否在自变量的取值范围内,并求相关的值; ⑤解决提出的实际问题. |
结合几何图形 | ①根据几何图形的性质,探求图形中的关系式; ②根据几何图形的关系式确定二次函数解析式; ③利用配方法等确定二次函数的最值,解决问题 |
1、(2021·广东省深圳外国语学校初三期末)小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数(t的单位:s,h的单位:m)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )
A.0.71s B.0.70s C.0.63s D.0.36s
2、(2021·浙江省初三学业考试)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留宽的门.已知计划中的建筑材料可建围墙(不包括门)的总长度为.设饲养室长为,占地面积为,则关于的函数表达式是( )
A. B.
C. D.
3、(2021·内蒙古自治区初三期中)如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在位置时,水面宽度为,此时水面到桥拱的距离是,则抛物线的函数关系式为( )
A. B. C. D.
4、(2021·河北省初三二模)“星星书店”出售某种笔记本,若每个可获利元,一天可售出个.当一天出售该种文具盒的总利润最大时,的值为( )
A.1 B.2 C.3 D.4
5、(2021·江苏省初三期末)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.
6、(2021·山东省初三一模)如图,在足够大的空地上有一段长为a(a≥50)米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
7、(2021·河南省初三)母亲节前夕,某花店准备采购一批康乃馨和萱草花,已知购买束康乃馨和束萱草花共需元;购买束康乃馨和束萱草花共需元.
(1)求康乃馨和萱草花的单价分别为多少元;
(2)经协商,购买康乃馨超过束时,每增加束,单价降低元;当超过束时,均按购买束时的单价购进,萱草花一律按原价购买.
①购买康乃馨束时,康乃馨的单价为_______元;购买康乃馨束时,康乃馨的单价为_______元(用含的代数式表示);
②该花店计划购进康乃馨和萱草花共束,其中康乃馨超过束,且不超过束,当购买康乃馨多少束时,购买两种花的总金额最少,最少为多少元?
1、(2021·山东省初三二模)从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④ B.①② C.②③④ D.②③
2、(2021·江苏省初三二模)竖直向上的小球离地面的高度h(米)与时间t(秒)的关系函数关系式为h=-2t2+mt+,若小球经过秒落地,则小球在上抛过程中,第( )秒离地面最高.
A. B. C. D.
3、(2021·山东省初三期中)某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年7月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=x﹣42(x≥168).若宾馆每天的日常运营成本为5000元,有客人入住的房间,宾馆每天每间另外还需支出28元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠,应将房间定价确定为( )
A.252元/间 B.256元/间 C.258元/间 D.260元/间
4、(2021秋•荔湾区期末)喜迎圣诞,某商店销售一种进价为50元件的商品,售价为60元件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨元正整数),每星期销售该商品的利润为元,则与的函数解析式为
A. B.
C. D.
5、(2021秋•沙坪坝区校级期中)如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为,门宽为.若饲养室长为,占地面积为,则关于的函数表达式为
A. B.
C. D.
6、(2021秋•西湖区期末)某工厂1月份的产值是200万元,平均每月产值的增长率为,则该工厂第一季度的产值关于的函数解析式为 .
7、(2021•连云港)某快餐店销售、两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份种快餐的利润,同时提高每份种快餐的利润.售卖时发现,在一定范围内,每份种快餐利润每降1元可多卖2份,每份种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是
元.
8、(2021春•洪山区校级月考)飞机着陆后滑行的距离(单位:关于滑行时间(单位:的函数解析式是,飞机着陆至停下来共滑行 .
9、(2021·广东实验中学越秀学校初三月考)如图,用一段长为40m的篱笆围成一个一边靠墙的矩形花圃ABCD,墙长24m.设AB长为x m,矩形的面积为S m2.
(1)写出S与x的函数关系式;
(2)当AB长为多少米时,所围成的花圃面积最大?最大值是多少?
(3)当花圃的面积为150m2时,AB长为多少米?
10.(2021·莆田擢英中学初三零模)某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.
(1)求y关于x的函数解析式和自变量的取值范围;
(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?
11、(2021•凉山州模拟)为鼓励大学生毕业返乡创业拉动县域绿色特产销售,某县为大学生开设团队创业途径,某团队试销一款苦荞茶,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销调研发现,销售过程中每天还要支付其他费用500元,日销售量γ(千克)与销售单价x(元)符合一次函数关系,如图所示.
(1)求y与x之间的函数关系式,并根据题意写出自变量x的取值范围;
(2)当每天的销售单价为多少时,该公司日获利最大?最大获利是多少元?
(3)若在销售过程中每天的利润不低于700元,请确定销售单价的取值范围.
本节课所学知识点 |
|
错题及错误原因 |
|
【同步学案】人教版数学九年级上册--22.3 第1课时 几何图形的最大面积导 学案: 这是一份【同步学案】人教版数学九年级上册--22.3 第1课时 几何图形的最大面积导 学案,共4页。学案主要包含了例题及练习,课后练习等内容,欢迎下载使用。
初中数学人教版九年级上册22.1.1 二次函数学案设计: 这是一份初中数学人教版九年级上册22.1.1 二次函数学案设计,共4页。学案主要包含了阅读课本,学习目标,探索新知,理一理知识点,课堂巩固训练,目标检测等内容,欢迎下载使用。
2020-2021学年4 二次函数的应用导学案: 这是一份2020-2021学年4 二次函数的应用导学案,共10页。学案主要包含了选择题,填空题,解答题等内容,欢迎下载使用。