浙江省杭州市下沙区重点达标名校2021-2022学年中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
A.2:3 B.3:2 C.4:9 D.9:4
2. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A.2 B. C.5 D.
3.tan30°的值为( )
A. B. C. D.
4.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
5.下列说法正确的是( )
A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8
D.若甲组数据的方差 S=" 0.01" ,乙组数据的方差 s= 0 .1 ,则乙组数据比甲组数据稳定
6.一次函数y=ax+b与反比例函数,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是( )
A. B. C. D.
7.多项式4a﹣a3分解因式的结果是( )
A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
8.的相反数是( )
A. B.- C. D.-
9.某微生物的直径为0.000 005 035m,用科学记数法表示该数为( )
A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5
10.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )
A.20 B.27 C.35 D.40
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.
12.化简:________.
13.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.
14.计算:=_____________.
15.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.
16.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是 ▲ .
17.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
三、解答题(共7小题,满分69分)
18.(10分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
19.(5分)先化简,再求代数式()÷的值,其中x=sin60°,y=tan30°.
20.(8分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)
21.(10分)如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.
若半圆上有一点,则的最大值为________;向右沿直线平移得到;
①如图,若截半圆的的长为,求的度数;
②当半圆与的边相切时,求平移距离.
22.(10分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.
求证:(1)AE=BF;(2)AE⊥BF.
23.(12分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
24.(14分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:
请依据统计结果回答下列问题:本次调查中,一共调查了 位好友.已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
【详解】
∵△ABC与△DEF相似,相似比为2:3,
∴这两个三角形的面积比为4:1.
故选C.
【点睛】
此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
2、B
【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
【详解】
根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
故选B
【点睛】
本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
3、D
【解析】
直接利用特殊角的三角函数值求解即可.
【详解】
tan30°=,故选:D.
【点睛】
本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
4、D
【解析】
试题分析:A.是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项正确.
故选D.
考点:轴对称图形.
5、C
【解析】
众数,中位数,方差等概念分析即可.
【详解】
A、中奖是偶然现象,买再多也不一定中奖,故是错误的;
B、全国中学生人口多,只需抽样调查就行了,故是错误的;
C、这组数据的众数和中位数都是8,故是正确的;
D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.
【点睛】
考核知识点:众数,中位数,方差.
6、C
【解析】
根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.
【详解】
A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,
满足ab<0,
∴a−b>0,
∴反比例函数y= 的图象过一、三象限,
所以此选项不正确;
B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,
满足ab<0,
∴a−b<0,
∴反比例函数y=的图象过二、四象限,
所以此选项不正确;
C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,
满足ab<0,
∴a−b>0,
∴反比例函数y=的图象过一、三象限,
所以此选项正确;
D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,
满足ab>0,与已知相矛盾
所以此选项不正确;
故选C.
【点睛】
此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小
7、B
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
故选:B.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
8、B
【解析】
∵+(﹣)=0,
∴的相反数是﹣.
故选B.
9、A
【解析】
试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
考点:科学记数法—表示较小的数.
10、B
【解析】
试题解析:第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.
故选B.
考点:规律型:图形变化类.
二、填空题(共7小题,每小题3分,满分21分)
11、6
【解析】
根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积 =CD·PD可得.
【详解】
解:∵ 在△ABC中,∠ACB=90°,∠A=45°,
∴∠B=45°,
∴AC=BC,
∵CD⊥AB ,
∴AD=BD=CD=AB,
∵AP2-PB2=48 ,
∴(AP+PB)(AP-PB)=48,
∴AB(AD+PD-BD+DP)=48,
∴AB·2PD=48,
∴2CD·2PD=48,
∴CD·PD=12,
∴ △PCD的面积=CD·PD=6.
故答案为6.
【点睛】
此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一
12、
【解析】
根据平面向量的加法法则计算即可
【详解】
.
故答案为:
【点睛】
本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.
13、
【解析】
根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.
【详解】
∵点A坐标为(3,4),
∴OA==5,
∴cosα=,
故答案为
【点睛】
本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.
14、
【解析】
分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.
详解:
原式=.
故答案为:.
点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.
15、
【解析】
试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围. ∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0, 解得:m<1.
考点:根的判别式.
16、-2<x<-1或x>1.
【解析】
不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.
不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.
而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.
由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.
∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.
∴不等式k1x<+b的解集是-2<x<-1或x>1.
17、
【解析】
根据弧长公式可得:=,
故答案为.
三、解答题(共7小题,满分69分)
18、(1);(2).
【解析】
(1)直接利用概率公式计算;
(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.
【详解】
解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;
(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示
画树状图为:
共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,
所以该纽能够翻译上述两种语言的概率= .
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
19、
【解析】
先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可
【详解】
原式
∴原式
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
20、见解析
【解析】
作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.
【详解】
解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.
点P即为所求.
【点睛】
本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.
21、(1);(2)①;②
【解析】
(1)由图可知当点F与点D重合时,AF最大,根据勾股定理即可求出此时AF的长;
(2)①连接EG、EH.根据的长为π可求得∠GEH=60°,可得△GEH是等边三角形,根据等边三角形的三个角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根据平角的定义即可求出∠A'GO的度数;
②分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案.
【详解】
解:
(1)当点F与点D重合时,AF最大,
AF最大=AD==,
故答案为:;
(2)①连接、.
∵,
∴.
∵,
∴是等边三角形,
∴.
∵,
∴,
∴,
∵,
∴,
∵,
∴,
∴.
②当切半圆于时,连接,则.
∵,
∴切半圆于点,
∴.
∵,
∴,
∴平移距离为.
当切半圆于时,连接并延长于点,
∵,,,
∴,
∵,
∴,
∵,
∴,
∵,
∴.
∵,
∴.
【点睛】
本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键.
22、见解析
【解析】
(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
【详解】
解:(1)证明:在△AEO与△BFO中,
∵Rt△OAB与Rt△EOF等腰直角三角形,
∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
∴△AEO≌△BFO,
∴AE=BF;
( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO
由(1)知:∠OAC=∠OBF,
∴∠BDA=∠AOB=90°,
∴AE⊥BF.
23、(1)100;(2)作图见解析;(3)1.
【解析】
试题分析:(1)根据百分比= 计算即可;
(2)求出“打球”和“其他”的人数,画出条形图即可;
(3)用样本估计总体的思想解决问题即可.
试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,
故答案为100;
(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:
(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.
24、(1)30;(2)①补图见解析;②120;③70人.
【解析】
分析:(1)由B类别人数及其所占百分比可得总人数;
(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;
②用360°乘以A类别人数所占比例可得;
③总人数乘以样本中C、D类别人数和所占比例.
详解:(1)本次调查的好友人数为6÷20%=30人,
故答案为:30;
(2)①设D类人数为a,则A类人数为5a,
根据题意,得:a+6+12+5a=30,
解得:a=2,
即A类人数为10、D类人数为2,
补全图形如下:
②扇形图中,“A”对应扇形的圆心角为360°×=120°,
故答案为:120;
③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.
点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
浙江省杭州市拱墅区重点名校2021-2022学年中考数学五模试卷含解析: 这是一份浙江省杭州市拱墅区重点名校2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,函数y=mx2+等内容,欢迎下载使用。
2022年浙江省台州市路桥区重点达标名校中考数学四模试卷含解析: 这是一份2022年浙江省台州市路桥区重点达标名校中考数学四模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列各组数中,互为相反数的是等内容,欢迎下载使用。
2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析: 这是一份2022年浙江省杭州市临安县重点达标名校中考数学模试卷含解析,共19页。