终身会员
搜索
    上传资料 赚现金

    浙江省湖州市第四中学2021-2022学年中考数学模拟预测试卷含解析

    立即下载
    加入资料篮
    浙江省湖州市第四中学2021-2022学年中考数学模拟预测试卷含解析第1页
    浙江省湖州市第四中学2021-2022学年中考数学模拟预测试卷含解析第2页
    浙江省湖州市第四中学2021-2022学年中考数学模拟预测试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省湖州市第四中学2021-2022学年中考数学模拟预测试卷含解析

    展开

    这是一份浙江省湖州市第四中学2021-2022学年中考数学模拟预测试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,在,,则的值为等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )
    A.11; B.6; C.3; D.1.
    2.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是(  )

    A.26°. B.44°. C.46°. D.72°
    3.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则( )
    A.a>0且4a+b=0 B.a<0且4a+b=0
    C.a>0且2a+b=0 D.a<0且2a+b=0
    4.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(  )
    A.10cm B.30cm C.45cm D.300cm
    5.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )
    A. B.
    C. D.
    6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是(  )
    A. B. C. D.
    7.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为(  )

    A. B. C. D.
    8.如图,小刚从山脚A出发,沿坡角为的山坡向上走了300米到达B点,则小刚上升了( )

    A.米 B.米 C.米 D.米
    9.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是(  )
    A.m<n B.m≤n C.m>n D.m≥n
    10.在,,则的值为( )
    A. B. C. D.
    11.下列计算正确的是
    A. B. C. D.
    12.不等式组的解集在数轴上可表示为(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.关于x的方程kx2﹣(2k+1)x+k+2=0有实数根,则k的取值范围是_____.
    14.分式方程的解是 .
    15.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.

    16.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.

    17.若 m、n 是方程 x2+2018x﹣1=0 的两个根,则 m2n+mn2﹣mn=_________.
    18.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.
    (1)求证:;
    (2)请探究线段DE,CE的数量关系,并说明理由;
    (3)若CD⊥AB,AD=2,BD=3,求线段EF的长.

    20.(6分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.从四份听力材料中,任选一份是难的听力材料的概率是   .用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.
    21.(6分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF
    22.(8分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
    (1)求证:CF是⊙O的切线;
    (2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)

    23.(8分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论.
    (1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;
    (2)对于小选手琪琪,只有甲、乙两位评委给出相同结论的概率是多少?
    (3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?
    24.(10分)先化简,再求值:,其中x为方程的根.
    25.(10分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.
    求反比例函数的表达式;
    若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.

    26.(12分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
    (2)化简:.
    27.(12分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
    (1)求抛物线的函数表达式;
    (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
    ①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
    ②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    ∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,
    ∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,
    ∴上述四个数中,只有D选项中的1符合要求.
    故选D.
    点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.
    2、A
    【解析】
    先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵图中是正五边形.
    ∴∠EAB=108°.
    ∵太阳光线互相平行,∠ABG=46°,
    ∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
    故选A.
    【点睛】
    此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
    3、A
    【解析】
    由图像经过点(0,m)、(4、m)可知对称轴为x=2,由n<m知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.
    【详解】
    ∵图像经过点(0,m)、(4、m)
    ∴对称轴为x=2,
    则,
    ∴4a+b=0
    ∵图像经过点(1,n),且n<m
    ∴抛物线的开口方向向上,
    ∴a>0,
    故选A.
    【点睛】
    此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.
    4、A
    【解析】
    根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
    【详解】
    直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形
    假设每个圆锥容器的地面半径为

    解得
    故答案选A.
    【点睛】
    本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。
    5、B
    【解析】
    分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.
    详解:设早上葡萄的价格是 x 元/千克,由题意得,
    .
    故选B.
    点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.
    6、A
    【解析】
    设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.
    【详解】
    设索长为x尺,竿子长为y尺,
    根据题意得:.
    故选A.
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    7、A
    【解析】
    根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.
    【详解】
    如图所示,

    ∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
    ∴DE2+CE2=CD2,DE=CE,
    ∴2S2=S1.
    观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
    ∴Sn=()n﹣2.
    当n=2018时,S2018=()2018﹣2=()3.
    故选A.
    【点睛】
    本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.
    8、A
    【解析】
    利用锐角三角函数关系即可求出小刚上升了的高度.
    【详解】
    在Rt△AOB中,∠AOB=90°,AB=300米,
    BO=AB•sinα=300sinα米.
    故选A.
    【点睛】
    此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.
    9、C
    【解析】
    分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得
    距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.
    详解:∵
    ∴此抛物线对称轴为
    ∵抛物线与x轴交于两点,
    ∴当时,得



    故选C.
    点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
    10、A
    【解析】
    本题可以利用锐角三角函数的定义求解即可.
    【详解】
    解:tanA=,
    ∵AC=2BC,
    ∴tanA=.
    故选:A.
    【点睛】
    本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
    11、B
    【解析】
    试题分析:根据合并同类项的法则,可知,故A不正确;
    根据同底数幂的除法,知,故B正确;
    根据幂的乘方,知,故C不正确;
    根据完全平方公式,知,故D不正确.
    故选B.
    点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
    12、A
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    ∵不等式①得:x>1,
    解不等式②得:x≤2,
    ∴不等式组的解集为1<x≤2,
    在数轴上表示为:,
    故选A.
    【点睛】
    本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、k≤.
    【解析】
    分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.
    【详解】
    当k=1时,原方程为-x+2=1,
    解得:x=2,
    ∴k=1符合题意;
    当k≠1时,有△=[-(2k+1)]2-4k(k+2)≥1,
    解得:k≤且k≠1.
    综上:k的取值范围是k≤.
    故答案为:k≤.
    【点睛】
    本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键.
    14、x=﹣1.
    【解析】
    试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    试题解析:去分母得:x=2x﹣1+2,
    解得:x=﹣1,
    经检验x=﹣1是分式方程的解.
    考点:解分式方程.
    15、1
    【解析】
    由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.
    【详解】
    解:∵把△ABC绕点C顺时针旋转得到△A'B'C',
    ∴∠A=∠A'=50°,∠BCB'=∠ACA'
    ∵A'B'⊥AC
    ∴∠A'+∠ACA'=90°
    ∴∠ACA'=1°
    ∴∠BCB'=1°
    故答案为:1.
    【点睛】
    本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.
    16、120
    【解析】
    首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
    【详解】
    由题意得:∠GBA=∠GBE,
    ∵AD∥BC,
    ∴∠AGB=∠GBE=30°,
    ∴∠ABC=60°,
    ∵AB∥CD,
    ∴∠C=180°-∠ABC=120°,
    故答案为:120.
    【点睛】
    本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
    17、1
    【解析】
    根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m2n+mm2﹣mn分解因式得到 mn(m+n﹣1),然后利用整体代入的方法计算.
    【详解】
    解:∵m、n 是方程 x2+2018x﹣1=0 的两个根,
    则原式=mn(m+n﹣1)
    =﹣1×(﹣2018﹣1)
    =﹣1×(﹣1)
    =1,
    故答案为:1.
    【点睛】
    本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别
    为与,则解题时要注意这两个关 系的合理应用.
    18、①②④.
    【解析】
    ①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.
    ②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.
    ③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.
    ④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.
    故一定正确的是①②④

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)DE=CE,理由见解析;(3).
    【解析】
    试题分析:(1)证明△ABE∽△ACD,从而得出结论;
    (2) 先证明∠CDE=∠ACD,从而得出结论;
    (3)解直角三角形示得.
    试题解析:
    (1)∵∠ABE =∠ACD,∠A=∠A,
    ∴△ABE∽△ACD,
    ∴;
    (2)∵,
    ∴,
    又∵∠A=∠A,
    ∴△ADE∽△ACB,
    ∴∠AED =∠ABC,
    ∵∠AED =∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,
    ∴∠ACD+∠CDE=∠ABE+∠CBE,
    ∵∠ABE =∠ACD,
    ∴∠CDE=∠CBE,
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∴∠CDE=∠ABE=∠ACD,
    ∴DE=CE;
    (3)∵CD⊥AB,
    ∴∠ADC=∠BDC=90°,
    ∴∠A+∠ACD=∠CDE+∠ADE=90°,
    ∵∠ABE =∠ACD,∠CDE=∠ACD,
    ∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,
    ∴AE=DE,BE⊥AC,
    ∵DE=CE,
    ∴AE=DE=CE,
    ∴AB=BC,
    ∵AD=2,BD=3,
    ∴BC=AB=AD+BD=5,
    在Rt△BDC中,,
    在Rt△ADC中,,
    ∴,
    ∵∠ADC=∠FEC=90°,
    ∴,
    ∴.
    20、(1);(2).
    【解析】
    【分析】(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是;
    (2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率.
    【详解】(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,
    ∴从四份听力材料中,任选一份是难的听力材料的概率是=,
    故答案为;
    (2)树状图如下:

    ∴P(两份材料都是难)=.
    【点睛】本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
    21、详见解析
    【解析】
    根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.
    【详解】
    证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF. (其他证法也可)
    22、(1)证明见解析;(2)9﹣3π
    【解析】
    试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.
    试题解析:(1)如图连接OD.
    ∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
    ∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
    在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,
    ∴CF⊥OD, ∴CF是⊙O的切线.
    (2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
    ∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,
    ∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,
    ∵EB=6,∴OB=OD═OA=3, 在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,
    ∴AC=OA•tan60°=3, ∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.

    23、(1)见解析;(2);(3).
    【解析】
    (1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;
    (2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案;
    (3)根据(1)即可求出琪琪进入复赛的概率.
    【详解】
    (1)画树状图如下:

    (2)∵共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,
    ∴只有甲、乙两位评委给出相同结论的概率P=;
    (3)∵共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,
    ∴乐乐进入复赛的概率P=.
    【点睛】
    此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=.
    24、1
    【解析】
    先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.
    【详解】
    解:原式=.
    解得,

    ∵时,无意义,
    ∴取.
    当时,原式=.
    25、(1)y= (1)(1,0)
    【解析】
    (1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;
    (1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.
    【详解】
    解:(1)∵点M(a,4)在直线y=1x+1上,
    ∴4=1a+1,
    解得a=1,
    ∴M(1,4),将其代入y=得到:k=xy=1×4=4,
    ∴反比例函数y=(x>0)的表达式为y=;
    (1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,
    ∴当x=0时,y=1.
    当y=0时,x=﹣1,
    ∴B(0,1),A(﹣1,0).
    ∵BC∥AD,
    ∴点C的纵坐标也等于1,且点C在反比例函数图象上,
    将y=1代入y=,得1=,
    解得x=1,
    ∴C(1,1).
    ∵四边形ABCD是平行四边形,
    ∴BC∥AD且BD=AD,
    由B(0,1),C(1,1)两点的坐标知,BC∥AD.
    又BC=1,
    ∴AD=1,
    ∵A(﹣1,0),点D在点A的右侧,
    ∴点D的坐标是(1,0).
    【点睛】
    考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.
    26、 (1)2;(2) x﹣y.
    【解析】
    分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
    详解:(1)原式=3﹣4﹣2×+4=2;
    (2)原式=•=x﹣y.
    点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
    27、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
    【解析】
    (1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
    (2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
    ②直接写出满足条件的F点的坐标即可,注意不要漏写.
    【详解】
    解:(1)将A、C两点坐标代入抛物线,得 ,
    解得: ,
    ∴抛物线的解析式为y=﹣x2+x+8;
    (2)①∵OA=8,OC=6,
    ∴AC= =10,
    过点Q作QE⊥BC与E点,则sin∠ACB = = =,
    ∴ =,
    ∴QE=(10﹣m),
    ∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
    ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
    ∴当m=5时,S取最大值;
    在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
    ∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
    D的坐标为(3,8),Q(3,4),
    当∠FDQ=90°时,F1(,8),
    当∠FQD=90°时,则F2(,4),
    当∠DFQ=90°时,设F(,n),
    则FD2+FQ2=DQ2,
    即+(8﹣n)2++(n﹣4)2=16,
    解得:n=6± ,
    ∴F3(,6+),F4(,6﹣),
    满足条件的点F共有四个,坐标分别为
    F1(,8),F2(,4),F3(,6+),F4(,6﹣).

    【点睛】
    本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.

    相关试卷

    2024年浙江省湖州市中考数学模拟预测练习试卷(解析版):

    这是一份2024年浙江省湖州市中考数学模拟预测练习试卷(解析版),文件包含2024年浙江省湖州市中考数学模拟预测练习试卷解析版docx、2024年浙江省湖州市中考数学模拟预测练习试卷docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    2023年浙江省湖州市安吉县中考数学模拟试卷(含解析):

    这是一份2023年浙江省湖州市安吉县中考数学模拟试卷(含解析),共24页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    浙江省桐乡市2021-2022学年中考数学模拟预测题含解析:

    这是一份浙江省桐乡市2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map