浙江省湖州长兴县联考2021-2022学年中考四模数学试题含解析
展开
这是一份浙江省湖州长兴县联考2021-2022学年中考四模数学试题含解析,共17页。试卷主要包含了已知二次函数y=,下列各数中,最小的数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.下列博物院的标识中不是轴对称图形的是( )
A. B.
C. D.
2.如图,点A所表示的数的绝对值是( )
A.3 B.﹣3 C. D.
3.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )
A.6个 B.7个 C.8个 D.9个
4.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
A. B. C. D.
5.如图所示几何体的主视图是( )
A. B. C. D.
6.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
7.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是( )
A.0≤x0≤1 B.0<x0<1且x0≠
C.x0<0或x0>1 D.0<x0<1
8.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是( )
A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD
9.下列各数中,最小的数是( )
A.0 B. C. D.
10.一次函数满足,且随的增大而减小,则此函数的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于________.
12.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.
13.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.
14.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________.
15.如图所示,数轴上点A所表示的数为a,则a的值是____.
16.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.
三、解答题(共8题,共72分)
17.(8分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
(1)求证:EF是⊙O的切线;
(2)求证:=4BP•QP.
18.(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
生产甲产品件数(件)
生产乙产品件数(件)
所用总时间(分钟)
10
10
350
30
20
850
(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
①用含a的代数式表示小王四月份生产乙种产品的件数;
②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
19.(8分)先化简,再求值:,其中m是方程的根.
20.(8分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?
21.(8分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评估成绩n(分)
评定等级
频数
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根据以上信息解答下列问题:
(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.
22.(10分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:
排球
10
9.5
9.5
10
8
9
9.5
9
7
10
4
5.5
10
9.5
9.5
10
篮球
9.5
9
8.5
8.5
10
9.5
10
8
6
9.5
10
9.5
9
8.5
9.5
6
整理、描述数据:按如下分数段整理、描述这两组样本数据:
(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)
分析数据:两组样本数据的平均数、中位数、众数如下表所示:
项目
平均数
中位数
众数
排球
8.75
9.5
10
篮球
8.81
9.25
9.5
得出结论:
(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;
(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.
你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)
23.(12分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3).
(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;
(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点
B1的坐标;
(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;
请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.
24.阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.
例如:求点到直线的距离.
解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.
【详解】
A、不是轴对称图形,符合题意;
B、是轴对称图形,不合题意;
C、是轴对称图形,不合题意;
D、是轴对称图形,不合题意;
故选:A.
【点睛】
此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误
2、A
【解析】
根据负数的绝对值是其相反数解答即可.
【详解】
|-3|=3,
故选A.
【点睛】
此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.
3、A
【解析】
根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【详解】
如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的C点有2个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点睛】
本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
4、A
【解析】
根据待定系数法即可求得.
【详解】
解:∵正比例函数y=kx的图象经过点(1,﹣3),
∴﹣3=k,即k=﹣3,
∴该正比例函数的解析式为:y=﹣3x.
故选A.
【点睛】
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
5、C
【解析】
从正面看几何体,确定出主视图即可.
【详解】
解:几何体的主视图为
故选C.
【点睛】
本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
6、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、D
【解析】
分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.
详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==
当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;
当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.
综上所述:m<n,所求x0的取值范围0<x0<1.
故选D.
点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.
8、B
【解析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
9、D
【解析】
根据实数大小比较法则判断即可.
【详解】
<0<1<,
故选D.
【点睛】
本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
10、A
【解析】
试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.
故选A.
考点:一次函数图象与系数的关系.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、70°
【解析】
试题分析:由平角的定义可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因为a∥b,所以∠4=∠1=70°.
故答案为70°.
考点:角的计算;平行线的性质.
12、9n+1.
【解析】
∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,
∴正方形和等边三角形的和=6+6=12=9+1;
∵第2个图由11个正方形和10个等边三角形组成,
∴正方形和等边三角形的和=11+10=21=9×2+1;
∵第1个图由16个正方形和14个等边三角形组成,
∴正方形和等边三角形的和=16+14=10=9×1+1,
…,
∴第n个图中正方形和等边三角形的个数之和=9n+1.
故答案为9n+1.
13、1°
【解析】
根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.
【详解】
∵△ABC≌△ADE,
∴∠BAC=∠DAE,AB=AD,
∴∠BAD=∠EAC=40°,
∴∠B=(180°-40°)÷2=1°,
故答案为1.
【点睛】
本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.
14、y=-x+2(答案不唯一)
【解析】
①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为 y=-x+2,
故答案为y=-x+2(答案不唯一).
15、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
【点睛】
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
16、1
【解析】
作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中
∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y= 上,
∴a=1×1=1.
故答案是:1.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.
考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
18、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
【解析】
(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
(2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
②根据“小王四月份的工资不少于1500元”即可列出不等式.
【详解】
(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:
,
解这个方程组得:,
答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
∴一小时生产甲产品4件,生产乙产品3件,
所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
②依题意:1.5a+2.8(600-)≥1500,
1680﹣0.6a≥1500,
解得:a≤1.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
19、原式=.
∵m是方程的根.∴,即,∴原式=.
【解析】
试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.
试题解析:原式=.
∵m是方程的根.∴,即,∴原式=.
考点:分式的化简求值;一元二次方程的解.
20、(1)200元和100元(2)至少6件
【解析】
(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.
【详解】
解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,
得,解得:,
答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
200a+100(34﹣a)≥4000,
解得:a≥6
答:威丽商场至少需购进6件A种商品.
21、(1)25;(2)8°48′;(3).
【解析】
试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
试题解析:(1)∵C等级频数为15,占60%,
∴m=15÷60%=25;
(2)∵B等级频数为:25﹣2﹣15﹣6=2,
∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:
∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
∴其中至少有一家是A等级的概率为:=.
考点:频数(率)分布表;扇形统计图;列表法与树状图法.
22、130 小明 平均数接近,而排球成绩的中位数和众数都较高.
【解析】
根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;
根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.
【详解】
解:补全表格成绩:
人数
项目
10
排球
1
1
2
7
5
篮球
0
2
1
10
3
达到优秀的人数约为(人);
故答案为130;
同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高答案不唯一,理由需支持判断结论
故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.
【点睛】
本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.
23、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).
【解析】
(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.
【详解】
解:(1)如图所示,点B的坐标为(﹣4,1);
(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);
(3)如图,△A2B2C2即为所求;
(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).
【点睛】
本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.
24、(1)点P在直线上,说明见解析;(2).
【解析】
解:(1) 求:(1)直线可变为,
说明点P在直线上;
(2)在直线上取一点(0,1),直线可变为
则,
∴这两条平行线的距离为.
相关试卷
这是一份2023年浙江省湖州市长兴县中考数学二模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省湖州市长兴县中考一模数学试题(含解析),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省湖州市长兴县和平中学中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。