|试卷下载
搜索
    上传资料 赚现金
    浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析01
    浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析02
    浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份浙江省宁波市江北区2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了下列四个实数中,比5小的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.单项式2a3b的次数是(  )
    A.2 B.3 C.4 D.5
    2.下列图标中,既是轴对称图形,又是中心对称图形的是(   )
    A. B. C. D.
    3.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为(  )

    A.0个 B.1个 C.2个 D.3个
    4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )

    A. B. C. D.
    5.下列四个实数中,比5小的是( )
    A. B. C. D.
    6.下列一元二次方程中,有两个不相等实数根的是(  )
    A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
    7.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )
    A.y=2x2+3 B.y=2x2﹣3
    C.y=2(x+3)2 D.y=2(x﹣3)2
    8.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为(  )

    A. B. C. D.
    9.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点
    的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
    如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是( )

    A.①②③ B.仅有①② C.仅有①③ D.仅有②③
    10.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=(  )
    A.3﹣ B.(+1) C.﹣1 D.(﹣1)
    二、填空题(共7小题,每小题3分,满分21分)
    11.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.
    12.已知图中的两个三角形全等,则∠1等于____________.

    13.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .
    14.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______

    15.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    16.π﹣3的绝对值是_____.
    17.从一副54张的扑克牌中随机抽取一张,它是K的概率为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,
    ①求w与x之间的函数关系式;
    ②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.

    19.(5分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为.求 x 和 y 的值.
    20.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.

    21.(10分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
    (1)求一次函数,反比例函数的表达式;
    (2)求证:点C为线段AP的中点;
    (3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.

    22.(10分)孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?

    23.(12分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   度;
    (2)请补全条形统计图;
    (3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
    24.(14分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.

    (1)求证:四边形是平行四边形;
    (2)如果,求证四边形是矩形.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    分析:根据单项式的性质即可求出答案.
    详解:该单项式的次数为:3+1=4
    故选C.
    点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.
    2、D
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念,可知:
    A既不是轴对称图形,也不是中心对称图形,故不正确;
    B不是轴对称图形,但是中心对称图形,故不正确;
    C是轴对称图形,但不是中心对称图形,故不正确;
    D即是轴对称图形,也是中心对称图形,故正确.
    故选D.
    考点:轴对称图形和中心对称图形识别
    3、A
    【解析】
    解:①由函数图象,得a=120÷3=40,
    故①正确,
    ②由题意,得5.5﹣3﹣120÷(40×2),
    =2.5﹣1.5,
    =1.
    ∴甲车维修的时间为1小时;
    故②正确,
    ③如图:

    ∵甲车维修的时间是1小时,
    ∴B(4,120).
    ∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.
    ∴E(5,240).
    ∴乙行驶的速度为:240÷3=80,
    ∴乙返回的时间为:240÷80=3,
    ∴F(8,0).
    设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,
    ,,
    解得,,
    ∴y1=80t﹣200,y2=﹣80t+640,
    当y1=y2时,
    80t﹣200=﹣80t+640,
    t=5.2.
    ∴两车在途中第二次相遇时t的值为5.2小时,
    故弄③正确,
    ④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,
    ∴两车相距的路程为:120﹣80=40千米,
    故④正确,
    故选A.
    4、D
    【解析】
    过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
    【详解】
    过C点作CD⊥AB,垂足为D.

    根据旋转性质可知,∠B′=∠B.
    在Rt△BCD中,tanB=,
    ∴tanB′=tanB=.
    故选D.
    【点睛】
    本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
    5、A
    【解析】
    首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.
    【详解】
    解:A、∵5<<6,
    ∴5﹣1<﹣1<6﹣1,
    ∴﹣1<5,故此选项正确;
    B、∵
    ∴,故此选项错误;
    C、∵6<<7,
    ∴5<﹣1<6,故此选项错误;
    D、∵4<<5,
    ∴,故此选项错误;
    故选A.
    【点睛】
    考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.
    6、B
    【解析】
    分析:根据一元二次方程根的判别式判断即可.
    详解:A、x2+6x+9=0.
    △=62-4×9=36-36=0,
    方程有两个相等实数根;
    B、x2=x.
    x2-x=0.
    △=(-1)2-4×1×0=1>0.
    方程有两个不相等实数根;
    C、x2+3=2x.
    x2-2x+3=0.
    △=(-2)2-4×1×3=-8<0,
    方程无实根;
    D、(x-1)2+1=0.
    (x-1)2=-1,
    则方程无实根;
    故选B.
    点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
    7、C
    【解析】
    按照“左加右减,上加下减”的规律,从而选出答案.
    【详解】
    y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.
    【点睛】
    本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.
    8、A
    【解析】
    过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
    【详解】
    过O作OC⊥AB于C,过N作ND⊥OA于D,

    ∵N在直线y=x+3上,
    ∴设N的坐标是(x,x+3),
    则DN=x+3,OD=-x,
    y=x+3,
    当x=0时,y=3,
    当y=0时,x=-4,
    ∴A(-4,0),B(0,3),
    即OA=4,OB=3,
    在△AOB中,由勾股定理得:AB=5,
    ∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
    ∴3×4=5OC,
    OC=,
    ∵在Rt△NOM中,OM=ON,∠MON=90°,
    ∴∠MNO=45°,
    ∴sin45°=,
    ∴ON=,
    在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
    即(x+3)2+(-x)2=()2,
    解得:x1=-,x2=,
    ∵N在第二象限,
    ∴x只能是-,
    x+3=,
    即ND=,OD=,
    tan∠AON=.
    故选A.
    【点睛】
    本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
    9、A
    【解析】
    解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.
    ∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.
    ∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.
    ∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m. 因此②正确.
    ∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s. 因此③正确.
    终上所述,①②③结论皆正确.故选A.
    10、C
    【解析】
    根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值.
    【详解】
    解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;
    则BC=2×=-1.
    故答案为:-1.
    【点睛】
    本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x(x﹣2)(x﹣1)2
    【解析】
    先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.
    【详解】
    解:(x2−2x)2−(2x−x2) =(x2−2x)2+(x2−2x) =(x2−2x)(x2−2x+1) =x(x−2)(x−1)2
    故答案为x(x﹣2)(x﹣1)2
    【点睛】
    此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.
    12、58°
    【解析】

    如图,∠2=180°−50°−72°=58°,
    ∵两个三角形全等,
    ∴∠1=∠2=58°.
    故答案为58°.
    13、65°
    【解析】
    解:由题意分析之,得出弧BD对应的圆周角是∠DAB,
    所以,=40°,由此则有:∠OCD=65°
    考点:本题考查了圆周角和圆心角的关系
    点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握
    14、5或
    【解析】
    分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.
    详解:∵四边形ABCD是菱形,
    ∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,

    ∴△ABD是等边三角形,
    ∴BD=AB=6,



    ∵点E在AC上,
    ∴当E在点O左边时
    当点E在点O右边时
    ∴或;
    故答案为或.
    点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.
    15、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.

    16、π﹣1.
    【解析】
    根据绝对值的性质即可解答.
    【详解】
    π﹣1的绝对值是π﹣1.
    故答案为π﹣1.
    【点睛】
    本题考查了绝对值的性质,熟练运用绝对值的性质是解决问题的关键.
    17、
    【解析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    一副扑克牌共有54张,其中只有4张K,
    ∴从一副扑克牌中随机抽出一张牌,得到K的概率是=,
    故答案为:.
    【点睛】
    此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.

    三、解答题(共7小题,满分69分)
    18、(1);(2)①;②
    【解析】
    (1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;
    (2)①分别求出种植A,B,C三种树苗的成本,然后相加即可;
    ②求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率.
    【详解】
    解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,
    根据题意,得:8x+6y+5(80-x-y)=480,
    整理,得:y=-3x+80;
    (2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,
    把y=-3x+80代入,得:w=-16x+5760,
    ②种植的总成本为5600元时,w=-16x+5760=5600,
    解得x=10,y=-3×10+80=50,
    即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名.
    采访到种植C种树苗工人的概率为:=.
    【点睛】
    本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.
    19、x=15,y=1
    【解析】
    根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;
    (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1.
    【详解】
    依题意得,

    化简得,,
    解得, .,
    检验当x=15,y=1时,,,
    ∴x=15,y=1是原方程的解,经检验,符合题意.
    答:x=15,y=1.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    20、作图见解析;CE=4.
    【解析】
    分析:利用数形结合的思想解决问题即可.
    详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.

    点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.
    21、(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.
    【解析】
    试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y= 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.
    试题解析:
    (1)∵点A与点B关于y轴对称,
    ∴AO=BO,
    ∵A(-4,0),
    ∴B(4,0),
    ∴P(4,2),
    把P(4,2)代入y=得m=8,
    ∴反比例函数的解析式:y=
    把A(-4,0),P(4,2)代入y=kx+b
    得:,解得:,
    所以一次函数的解析式:y=x+1.
    (2)∵点A与点B关于y轴对称,
    ∴OA=OB
    ∵PB丄x轴于点B,
    ∴∠PBA=90°,
    ∵∠COA=90°,
    ∴PB∥CO,
    ∴点C为线段AP的中点.
    (3)存在点D,使四边形BCPD为菱形
    ∵点C为线段AP的中点,
    ∴BC=,
    ∴BC和PC是菱形的两条边
    由y=x+1,可得点C(0,1),
    过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,
    分别连结PD、BD,

    ∴点D(8,1), BP⊥CD
    ∴PE=BE=1,
    ∴CE=DE=4,
    ∴PB与CD互相垂直平分,
    ∴四边形BCPD为菱形.
    ∴点D(8,1)即为所求.
    22、(1)60;(2)20,20;(3)38000
    【解析】
    (1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;
    (2)先确定各组的人数,然后根据中位数和众数的定义求解;
    (3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.
    【详解】
    (1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);
    (2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.
    ∵20出现次数最多,∴众数为20元;
    ∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;
    (3)2000=38000(元),∴估算全校学生共捐款38000元.
    【点睛】
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.
    23、 (1) 60,90;(2)见解析;(3) 300人
    【解析】
    (1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
    (2)由(1)可求得了解的人数,继而补全条形统计图;
    (3)利用样本估计总体的方法,即可求得答案.
    【详解】
    解:(1)∵了解很少的有30人,占50%,
    ∴接受问卷调查的学生共有:30÷50%=60(人);
    ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
    故答案为60,90;
    (2)60﹣15﹣30﹣10=5;
    补全条形统计图得:

    (3)根据题意得:900×=300(人),
    则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
    24、(1)见解析;(2)见解析.
    【解析】
    (1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
    (2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
    【详解】
    证明:(1)是的中点,



    又,


    又是的中线,

    又,
    四边形是平行四边形;
    (2),

    ∴,即,

    又,

    又是的中线,

    又四边形是平行四边形,
    四边形是矩形.

    【点睛】
    本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.

    相关试卷

    浙江省宁波市海曙区2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份浙江省宁波市海曙区2022年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了下列运算正确的是,计算的结果是等内容,欢迎下载使用。

    宁波市北仑区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份宁波市北仑区达标名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,在同一平面内,下列说法,估计-1的值在等内容,欢迎下载使用。

    2022年浙江省仙居县市级名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年浙江省仙居县市级名校初中数学毕业考试模拟冲刺卷含解析,共16页。试卷主要包含了如图,内接于,若,则,估计介于,下列计算结果为a6的是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map