搜索
    上传资料 赚现金
    英语朗读宝

    浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析

    浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析第1页
    浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析第2页
    浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析

    展开

    这是一份浙江省宁波市镇海区重点达标名校2022年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔,以下各图中,能确定的是,若分式有意义,则a的取值范围是,下列命题中错误的有个等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是由四个小正方体叠成的一个几何体,它的左视图是( )

    A. B. C. D.
    2.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )

    A.四边形AEDF是平行四边形
    B.若∠BAC=90°,则四边形AEDF是矩形
    C.若AD平分∠BAC,则四边形AEDF是矩形
    D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
    3.如图所示的图形,是下面哪个正方体的展开图(  )

    A. B. C. D.
    4.如图所示的几何体,它的左视图是( )

    A. B. C. D.
    5.一元二次方程(x+2017)2=1的解为( )
    A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣2017
    6.以下各图中,能确定的是( )
    A. B. C. D.
    7.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的(  )
    A. B.
    C. D.
    8.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )

    A.27° B.34° C.36° D.54°
    9.若分式有意义,则a的取值范围是(  )
    A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数
    10.下列命题中错误的有(  )个
    (1)等腰三角形的两个底角相等 
    (2)对角线相等且互相垂直的四边形是正方形
    (3)对角线相等的四边形为矩形 
    (4)圆的切线垂直于半径
    (5)平分弦的直径垂直于弦
    A.1 B.2 C.3 D.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____

    12.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.
    13.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为______.
    14.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.

    15.计算:=_______.
    16.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)

    三、解答题(共8题,共72分)
    17.(8分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
    组别
    雾霾天气的主要成因
    百分比
    A
    工业污染
    45%
    B
    汽车尾气排放

    C
    炉烟气排放
    15%
    D
    其他(滥砍滥伐等)


    请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.
    18.(8分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、.
    求证:;请你判断与的大小关系,并说明理由.
    19.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:
    甲:79,86,82,85,83.
    乙:88,81,85,81,80.
    请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.
    20.(8分)如图,▱ABCD中,点E,F分别是BC和AD边上的点,AE垂直平分BF,交BF于点P,连接EF,PD.求证:平行四边形ABEF是菱形;若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

    21.(8分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
    他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
    22.(10分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.

    23.(12分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?

    24.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.试判断DE与⊙O的位置关系,并说明理由;过点D作DF⊥AB于点F,若BE=3,DF=3,求图中阴影部分的面积.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.
    考点:简单组合体的三视图.
    2、C
    【解析】
    A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,
    ∴DE∥AF,DF∥AE,
    ∴四边形AEDF是平行四边形;即A正确;
    B选项,∵四边形AEDF是平行四边形,∠BAC=90°,
    ∴四边形AEDF是矩形;即B正确;
    C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;
    D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.
    故选C.
    3、D
    【解析】
    根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
    【详解】
    A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
    B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
    C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
    D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
    故选D.
    【点睛】
    本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
    4、A
    【解析】
    从左面观察几何体,能够看到的线用实线,看不到的线用虚线.
    【详解】
    从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
    故选:A.
    【点睛】
    本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.
    5、A
    【解析】
    利用直接开平方法解方程.
    【详解】
    (x+2017)2=1
    x+2017=±1,
    所以x1=-2018,x2=-1.
    故选A.
    【点睛】
    本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
    6、C
    【解析】
    逐一对选项进行分析即可得出答案.
    【详解】
    A中,利用三角形外角的性质可知,故该选项错误;
    B中,不能确定的大小关系,故该选项错误;
    C中,因为同弧所对的圆周角相等,所以,故该选项正确;
    D中,两直线不平行,所以,故该选项错误.
    故选:C.
    【点睛】
    本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.
    7、D
    【解析】
    当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
    【详解】
    解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
    ∴直线经过一、二、四象限,双曲线在二、四象限.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
    8、C
    【解析】
    由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.
    【详解】
    解:∵AB与⊙O相切于点A,
    ∴OA⊥BA.
    ∴∠OAB=90°.
    ∵∠CDA=27°,
    ∴∠BOA=54°.
    ∴∠B=90°-54°=36°.
    故选C.
    考点:切线的性质.
    9、A
    【解析】
    分析:根据分母不为零,可得答案
    详解:由题意,得
    ,解得
    故选A.
    点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.
    10、D
    【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.
    详解:等腰三角形的两个底角相等,(1)正确;
    对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;
    对角线相等的平行四边形为矩形,(3)错误;
    圆的切线垂直于过切点的半径,(4)错误;
    平分弦(不是直径)的直径垂直于弦,(5)错误.
    故选D.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可
    【详解】
    如图,连接BF.

    ∵△AEF是由△ABE沿AE折叠得到的,
    ∴BF⊥AE,BE=EF.
    ∵BC=6,点E为BC的中点,
    ∴BE=EC=EF=3
    根据勾股定理有AE=AB+BE
    代入数据求得AE=5
    根据三角形的面积公式
    得BH=
    即可得BF=
    由FE=BE=EC,
    可得∠BFC=90°
    再由勾股定理有BC-BF=CF
    代入数据求得CF=
    故答案为
    【点睛】
    此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质
    12、y=﹣x+1
    【解析】
    根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.
    【详解】
    ∵一次函数y随x的增大而减小,
    ∴k<0,
    ∵一次函数的解析式,过点(1,0),
    ∴满足条件的一个函数解析式是y=-x+1,
    故答案为y=-x+1.
    【点睛】
    本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.
    13、1
    【解析】
    解:根据题意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案为:1.
    点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x1、x2具有这样的关系:x1+x2=,x1x2=是解题的关键.
    14、
    【解析】
    根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.
    【详解】
    抛物线的对称轴为x=-.
    ∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,
    ∴点C的横坐标为-1.
    ∵四边形ABCD为菱形,
    ∴AB=BC=AD=1,
    ∴点D的坐标为(-2,0),OA=2.
    在Rt△ABC中,AB=1,OA=2,
    ∴OB==4,
    ∴S菱形ABCD=AD•OB=1×4=3.
    故答案为3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.
    15、3
    【解析】
    先把化成,然后再合并同类二次根式即可得解.
    【详解】
    原式=2.
    故答案为
    【点睛】
    本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
    16、60
    【解析】
    根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
    【详解】
    ∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
    ∴+=100, 解得,AD≈60
    考点:解直角三角形的应用.

    三、解答题(共8题,共72分)
    17、(1)200人,;(2)见解析,;(3)75万人.
    【解析】
    (1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;
    (2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;
    (3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.
    【详解】
    (1)本次被调查的市民共有:(人),
    ∴,;
    (2)组的人数是(人)、组的人数是(人),
    ∴;
    补全的条形统计图如下图所示:

    扇形区域所对应的圆心角的度数为:

    (3)(万),
    ∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.
    【点睛】
    本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.
    18、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行线的性质和中点的定义得到 ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.
    【详解】
    证明:(1)∵BG∥AC

    ∵是的中点

    又∵
    ∴△BDG≌△CDF

    (2)由(1)中△BDG≌△CDF
    ∴GD=FD,BG=CF
    又∵
    ∴ED垂直平分DF
    ∴EG=EF
    ∵在△BEG中,BE+BG>GE,
    ∴>
    【点睛】
    本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.
    19、(1)83,81;(2),推荐甲去参加比赛.
    【解析】
    (1)根据中位数和众数分别求解可得;
    (2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.
    【详解】
    (1)甲成绩的中位数是83分,乙成绩的众数是81分,
    故答案为:83分、81分;
    (2),
    ∴.
    ∵,,
    ∴推荐甲去参加比赛.
    【点睛】
    此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    20、(1)详见解析;(2)tan∠ADP=.
    【解析】
    (1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;
    (2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.
    【详解】
    (1)证明:∵AE垂直平分BF,
    ∴AB=AF,
    ∴∠BAE=∠FAE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠FAE=∠AEB,
    ∴∠AEB=∠BAE,
    ∴AB=BE,
    ∴AF=BE.
    ∵AF∥BC,
    ∴四边形ABEF是平行四边形.
    ∵AB=BE,
    ∴四边形ABEF是菱形;
    (2)解:作PH⊥AD于H,
    ∵四边形ABEF是菱形,∠ABC=60°,AB=4,
    ∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
    ∴AP=AB=2,
    ∴PH=,DH=5,
    ∴tan∠ADP==.

    【点睛】
    本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.
    21、(1)详见解析;(2)详见解析;(3)
    【解析】
    (1)利用等腰三角形的性质和三角形内角和即可得出结论;
    (2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
    (3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
    【详解】
    (1)∵AD=BD,
    ∴∠B=∠BAD,
    ∵AD=CD,
    ∴∠C=∠CAD,
    在△ABC中,∠B+∠C+∠BAC=180°,
    ∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
    ∴∠B+∠C=90°,
    ∴∠BAC=90°,
    (2)如图②,连接与,交点为,连接

    四边形是矩形







    (3)如图3,过点做于点

    四边形是矩形

    是等边三角形

    由(2)知,


    在中,




    【点睛】
    此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.
    22、 “石鼓阁”的高AB的长度为56m.
    【解析】
    根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得=,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得=,代入数值计算即可得出结论.
    【详解】
    由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,
    由反射定律可知:∠ACB=∠ECD,
    则△ABC∽△EDC,
    ∴=,
    即=①,
    ∵∠AHB=∠GHF,
    ∴△ABH∽△GFH,
    ∴=,即=②,
    联立①②,解得:AB=56,
    答:“石鼓阁”的高AB的长度为56m.
    【点睛】
    本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    23、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.
    【解析】
    (1)先利用待定系数法求一次函数解析式;
    (2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.
    【详解】
    (1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得:,∴y与x之间的函数关系式为y=﹣x+170;
    (2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.
    ∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W有最大值2.
    答:售价定为130元时,每天获得的利润最大,最大利润是2元.
    【点睛】
    本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.
    24、(1)DE与⊙O相切,理由见解析;(2)阴影部分的面积为2π﹣.
    【解析】
    (1)直接利用角平分线的定义结合平行线的判定与性质得出∠DEB=∠EDO=90°,进而得出答案;
    (2)利用勾股定理结合扇形面积求法分别分析得出答案.
    【详解】
    (1)DE与⊙O相切,
    理由:连接DO,

    ∵DO=BO,
    ∴∠ODB=∠OBD,
    ∵∠ABC的平分线交⊙O于点D,
    ∴∠EBD=∠DBO,
    ∴∠EBD=∠BDO,
    ∴DO∥BE,
    ∵DE⊥BC,
    ∴∠DEB=∠EDO=90°,
    ∴DE与⊙O相切;
    (2)∵∠ABC的平分线交⊙O于点D,DE⊥BE,DF⊥AB,
    ∴DE=DF=3,
    ∵BE=3,
    ∴BD==6,
    ∵sin∠DBF=,
    ∴∠DBA=30°,
    ∴∠DOF=60°,
    ∴sin60°=,
    ∴DO=2,
    则FO=,
    故图中阴影部分的面积为:.
    【点睛】
    此题主要考查了切线的判定方法以及扇形面积求法等知识,正确得出DO的长是解题关键.

    相关试卷

    2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年浙江省义乌地区重点达标名校中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    2022年贵州省遵义地区重点达标名校中考数学考试模拟冲刺卷含解析:

    这是一份2022年贵州省遵义地区重点达标名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,将△ABC绕点C,下列代数运算正确的是等内容,欢迎下载使用。

    2022届浙江省宁波市镇海区重点达标名校中考冲刺卷数学试题含解析:

    这是一份2022届浙江省宁波市镇海区重点达标名校中考冲刺卷数学试题含解析,共17页。试卷主要包含了3的相反数是,已知点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map