终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    浙江省嵊州市崇仁镇中学2022年中考猜题数学试卷含解析

    立即下载
    加入资料篮
    浙江省嵊州市崇仁镇中学2022年中考猜题数学试卷含解析第1页
    浙江省嵊州市崇仁镇中学2022年中考猜题数学试卷含解析第2页
    浙江省嵊州市崇仁镇中学2022年中考猜题数学试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省嵊州市崇仁镇中学2022年中考猜题数学试卷含解析

    展开

    这是一份浙江省嵊州市崇仁镇中学2022年中考猜题数学试卷含解析,共25页。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )

    A. B.
    C. D.
    2.的值是  
    A.±3 B.3 C.9 D.81
    3.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米

    A. B. C.+1 D.3
    4.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
    成绩(米)






    人数






    则这名运动员成绩的中位数、众数分别是( )
    A. B. C., D.
    5.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:

    下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
    A.① B.② C.①③ D.②③
    6.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是(  )

    A.y1 B.y2 C.y3 D.y4
    7.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    8.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=(  )

    A.16 B.18 C.20 D.24
    9.不等式组的解集在数轴上表示正确的是( )
    A. B. C. D.
    10.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为(   )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.

    12.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.

    13.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
    14.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.

    15.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线 与此正方形的边有交点,则a的取值范围是________.

    16.如图,与中,,,,,AD的长为________.

    17.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .

    三、解答题(共7小题,满分69分)
    18.(10分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.
    (1)求证:DE是⊙O的切线;
    (2)若AC∥DE,当AB=8,CE=2时,求AC的长.

    19.(5分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.

    请根据图中信息解决下列问题:
    (1)共有   名同学参与问卷调查;
    (2)补全条形统计图和扇形统计图;
    (3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
    20.(8分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)
    奖金金额
    获奖人数
    20元
    15元
    10元
    5元
    商家甲超市
    5
    10
    15
    20
    乙超市
    2
    3
    20
    25
    (1)在甲超市摇奖的顾客获得奖金金额的中位数是   ,在乙超市摇奖的顾客获得奖金金额的众数是   ;
    (2)请你补全统计图1;
    (3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?
    (4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?

    21.(10分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.

    22.(10分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
    (1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
    (2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
    23.(12分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:
    本次调查中,王老师一共调查了   名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.
    24.(14分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°. 解方程: =1﹣



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据平行线分线段成比例定理逐项分析即可.
    【详解】
    A.∵,
    ∴,,
    ∴,故A正确;
    B. ∵,
    ∴,故B不正确;
    C. ∵,
    ∴ ,故C不正确;
    D. ∵,
    ∴,故D不正确;
    故选A.
    【点睛】
    本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
    2、C
    【解析】
    试题解析:∵
    ∴的值是3
    故选C.
    3、C
    【解析】
    由题意可知,AC=1,AB=2,∠CAB=90°
    据勾股定理则BC=m;
    ∴AC+BC=(1+)m.
    答:树高为(1+)米.
    故选C.
    4、D
    【解析】
    根据中位数、众数的定义即可解决问题.
    【详解】
    解:这些运动员成绩的中位数、众数分别是4.70,4.1.
    故选:D.
    【点睛】
    本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
    5、B
    【解析】
    根据图形和各个小题的说法可以判断是否正确,从而解答本题
    【详解】
    当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
    随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
    虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
    故选:B.
    【点睛】
    此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
    6、A
    【解析】
    由图象的点的坐标,根据待定系数法求得解析式即可判定.
    【详解】
    由图象可知:
    抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;
    抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;
    抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;
    抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;
    综上,解析式中的二次项系数一定小于1的是y1
    故选A.
    【点睛】
    本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.
    7、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    8、B
    【解析】
    【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.
    【详解】∵EF∥BC,
    ∴△AEF∽△ABC,
    ∵AB=3AE,
    ∴AE:AB=1:3,
    ∴S△AEF:S△ABC=1:9,
    设S△AEF=x,
    ∵S四边形BCFE=16,
    ∴,
    解得:x=2,
    ∴S△ABC=18,
    故选B.
    【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.
    9、D
    【解析】
    试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
    考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
    10、A
    【解析】
    试题解析:连接OE,OF,ON,OG,

    在矩形ABCD中,
    ∵∠A=∠B=90°,CD=AB=4,
    ∵AD,AB,BC分别与⊙O相切于E,F,G三点,
    ∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
    ∴四边形AFOE,FBGO是正方形,
    ∴AF=BF=AE=BG=2,
    ∴DE=3,
    ∵DM是⊙O的切线,
    ∴DN=DE=3,MN=MG,
    ∴CM=5-2-MN=3-MN,
    在Rt△DMC中,DM2=CD2+CM2,
    ∴(3+NM)2=(3-NM)2+42,
    ∴NM=,
    ∴DM=3+=,
    故选B.
    考点:1.切线的性质;3.矩形的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
    【详解】
    如图,连接BE,

    ∵四边形BCEK是正方形,
    ∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,
    ∴BF=CF,
    根据题意得:AC∥BK,
    ∴△ACO∽△BKO,
    ∴KO:CO=BK:AC=1:3,
    ∴KO:KF=1:1,
    ∴KO=OF=CF=BF,
    在Rt△PBF中,tan∠BOF==1,
    ∵∠AOD=∠BOF,
    ∴tan∠AOD=1.
    故答案为1
    【点睛】
    此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
    12、1.
    【解析】
    先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.
    【详解】


    又∵∠A=∠A,
    ∴△ABC∽△AED,

    ∵BC=30,
    ∴DE=1,
    故答案为1.
    【点睛】
    考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    13、2或2.
    【解析】
    本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
    【详解】
    解:

    当点在线段的延长线上时,如图3所示.
    过点作于,
    是正方形的对角线,
    ,

    ,
    在中,由勾股定理,得:
    ,
    在和中,,
    ,



    当点在线段上时,如图4所示.
    过作于.
    是正方形的对角线,




    在中,由勾股定理,得:

    在和中,,
    ,



    故答案为或.
    【点睛】
    本题主要考查了勾股定理和三角形全等的证明.
    14、
    【解析】
    如图作DH⊥AE于H,连接CG.设DG=x,

    ∵∠DCE=∠DEC,
    ∴DC=DE,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=90°,
    ∴DA=DE,
    ∵DH⊥AE,
    ∴AH=HE=DG,
    在△GDC与△GDE中,

    ∴△GDC≌△GDE(SAS),
    ∴GC=GE,∠DEG=∠DCG=∠DAF,
    ∵∠AFD=∠CFG,
    ∴∠ADF=∠CGF=90°,
    ∴2∠GDE+2∠DEG=90°,
    ∴∠GDE+∠DEG=45°,
    ∴∠DGH=45°,
    在Rt△ADH中,AD=8,AH=x,DH=x,
    ∴82=x2+(x)2,
    解得:x=,
    ∵△ADH∽△AFD,
    ∴,
    ∴AF==4.
    故答案为4.
    15、-1≤a≤
    【解析】
    根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.
    【详解】
    解:反比例函数经过点A和点C.
    当反比例函数经过点A时,即=3,
    解得:a=±(负根舍去);
    当反比例函数经过点C时,即=3,
    解得:a=1±(负根舍去),
    则-1≤a≤.
    故答案为: -1≤a≤.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    16、
    【解析】
    先证明△ABC∽△ADB,然后根据相似三角形的判定与性质列式求解即可.
    【详解】
    ∵,,
    ∴△ABC∽△ADB,
    ∴,
    ∵,,
    ∴,
    ∴AD=.
    故答案为:.
    【点睛】
    本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.
    17、①③⑤
    【解析】
    ①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等; 
    ②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF; 
    ③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证; 
    ④连接BD,求出△ABD的面积,然后减去△BDP的面积即可; 
    ⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.
    【详解】
    ①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°, 
    ∴∠EAB=∠PAD, 
    又∵AE=AP,AB=AD, 
    ∵在△APD和△AEB中, 
    , 
    ∴△APD≌△AEB(SAS); 
    故此选项成立; 
    ③∵△APD≌△AEB, 
    ∴∠APD=∠AEB, 
    ∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE, 
    ∴∠BEP=∠PAE=90°, 
    ∴EB⊥ED; 
    故此选项成立; 
    ②过B作BF⊥AE,交AE的延长线于F, 
    ∵AE=AP,∠EAP=90°, 
    ∴∠AEP=∠APE=45°, 
    又∵③中EB⊥ED,BF⊥AF, 
    ∴∠FEB=∠FBE=45°, 
    又∵BE= = = , 
    ∴BF=EF= , 
    故此选项不正确; 
    ④如图,连接BD,在Rt△AEP中,
     
    ∵AE=AP=1, 
    ∴EP= , 
    又∵PB= , 
    ∴BE= , 
    ∵△APD≌△AEB, 
    ∴PD=BE= , 
    ∴S △ABP+S △ADP=S △ABD-S △BDP= S 正方形ABCD- ×DP×BE= ×(4+ )- × × = + . 
    故此选项不正确. 
    ⑤∵EF=BF= ,AE=1, 
    ∴在Rt△ABF中,AB 2=(AE+EF) 2+BF 2=4+ , 
    ∴S 正方形ABCD=AB 2=4+ , 
    故此选项正确. 
    故答案为①③⑤.
    【点睛】
    本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)AC的长为.
    【解析】
    (1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
    (2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.
    【详解】
    (1)如图,连接BD,

    ∵∠BAD=90°,
    ∴点O必在BD上,即:BD是直径,
    ∴∠BCD=90°,
    ∴∠DEC+∠CDE=90°.
    ∵∠DEC=∠BAC,
    ∴∠BAC+∠CDE=90°.
    ∵∠BAC=∠BDC,
    ∴∠BDC+∠CDE=90°,
    ∴∠BDE=90°,即:BD⊥DE.
    ∵点D在⊙O上,
    ∴DE是⊙O的切线;
    (2)∵DE∥AC.
    ∵∠BDE=90°,
    ∴∠BFC=90°,
    ∴CB=AB=8,AF=CF=AC,
    ∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,
    ∴∠CDE=∠CBD.
    ∵∠DCE=∠BCD=90°,
    ∴△BCD∽△DCE,
    ∴,
    ∴,
    ∴CD=1.
    在Rt△BCD中,BD==1,
    同理:△CFD∽△BCD,
    ∴,
    ∴,
    ∴CF=,
    ∴AC=2C=.
    【点睛】
    考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.
    19、(1)100;(2)补图见解析;(3)570人.
    【解析】
    (1)由读书1本的人数及其所占百分比可得总人数;
    (2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;
    (3)总人数乘以样本中读2本人数所占比例.
    【详解】
    (1)参与问卷调查的学生人数为(8+2)÷10%=100人,
    故答案为:100;
    (2)读4本的女生人数为100×15%﹣10=5人,
    读2本人数所占百分比为×100%=38%,
    补全图形如下:

    (3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    20、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).
    【解析】
    (1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.
    【详解】
    (1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,
    故答案为:10元、5元;
    (2)补全图形如下:

    (3)在甲超市平均获奖为=10(元),
    在乙超市平均获奖为=8.2(元);
    (4)获得奖金10元的概率是=.
    【点睛】
    本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.
    21、11米
    【解析】
    过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.
    【详解】
    解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,

    则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,
    ∵△ABC≌△A′B′C′,
    ∴∠MAE=∠B′MF,
    ∵∠AEM=∠B′FM=90°,
    ∴△AMF∽△MB′F,
    ∴ ,

    ∴MF= ,


    答:旗杆MN的高度约为11米.
    【点睛】
    本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.
    22、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【解析】
    (1)根据题意可以得到y关于x的函数解析式,本题得以解决;
    (2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
    【详解】
    (1)由题意可得,
    y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
    即y与x的函数关系式为y=﹣50x+10500;
    (2)由题意可得,,得x,
    ∵x是整数,y=﹣50x+10500,
    ∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
    答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【点睛】
    本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
    23、(1)20;(2)作图见试题解析;(3).
    【解析】
    (1)由A类的学生数以及所占的百分比即可求得答案;
    (2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;
    (3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.
    【详解】
    (1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);
    故答案为20;
    (2)∵C类女生:20×25%﹣2=3(名);
    D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);
    如图:

    (3)列表如下:A类中的两名男生分别记为A1和A2,

    男A1
    男A2
    女A
    男D
    男A1男D
    男A2男D
    女A男D
    女D
    男A1女D
    男A2女D
    女A女D
    共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:.
    24、(1)﹣1;(2)x=﹣1是原方程的根.
    【解析】
    (1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;
    (2)直接去分母再解方程得出答案.
    【详解】
    (1)原式=﹣2﹣1+2×
    =﹣﹣1+
    =﹣1;
    (2)去分母得:3x=x﹣3+1,
    解得:x=﹣1,
    检验:当x=﹣1时,x﹣3≠0,
    故x=﹣1是原方程的根.
    【点睛】
    此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.

    相关试卷

    浙江省嵊州市崇仁镇中学2022-2023学年数学九上期末达标检测试题含解析:

    这是一份浙江省嵊州市崇仁镇中学2022-2023学年数学九上期末达标检测试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年浙江省温州地区中考猜题数学试卷含解析:

    这是一份2022年浙江省温州地区中考猜题数学试卷含解析,共17页。试卷主要包含了规定,1﹣的相反数是等内容,欢迎下载使用。

    2022届浙江省余姚市中考猜题数学试卷含解析:

    这是一份2022届浙江省余姚市中考猜题数学试卷含解析,共23页。试卷主要包含了计算等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map