开学活动
搜索
    上传资料 赚现金

    浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析

    浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析第1页
    浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析第2页
    浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析

    展开

    这是一份浙江省台州市第四协作区市级名校2022年中考数学最后一模试卷含解析,共20页。试卷主要包含了下列运算,结果正确的是,不等式组的解在数轴上表示为,定义运算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是二次函数的部分图象,由图象可知不等式的解集是( )

    A. B. C.且 D.x<-1或x>5
    2.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为(  )
    A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×109
    3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是(  )

    A. B. C. D.
    4.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为(  )

    A. B. C. D.
    5.已知二次函数的与的不符对应值如下表:
















    且方程的两根分别为,,下面说法错误的是( ).
    A., B.
    C.当时, D.当时,有最小值
    6.下列运算,结果正确的是(  )
    A.m2+m2=m4 B.2m2n÷mn=4m
    C.(3mn2)2=6m2n4 D.(m+2)2=m2+4
    7.不等式组的解在数轴上表示为( )
    A. B. C. D.
    8.如果数据x1,x2,…,xn的方差是3,则另一组数据2x1,2x2,…,2xn的方差是(  )
    A.3 B.6 C.12 D.5
    9.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是(  )
    A. B. C. D.
    10.定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为( )
    A.0 B.2 C.4m D.-4m
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.用一条长 60 cm 的绳子围成一个面积为 216的矩形.设矩形的一边长为 x cm,则可列方程为______.
    12.使有意义的的取值范围是__________.
    13.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.

    14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.

    15.如图,A、D是⊙O上的两个点,BC是直径,若∠D=40°,则∠OAC=____度.

    16.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.

    三、解答题(共8题,共72分)
    17.(8分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.
    (1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;
    (2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
    (3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?
    18.(8分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.

    19.(8分)(1)计算:.
    (2)解方程:x2﹣4x+2=0
    20.(8分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.

    21.(8分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
    (问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
    (探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
    (应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.

    22.(10分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
    此次抽样调查中,共调查了 名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.
    23.(12分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)
    (1)求抛物线的表达式;
    (2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.

    24.城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.
    (1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是   ;
    (2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
    由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
    ∴图象与x轴的另一个交点坐标为(-1,0).
    由图象可知:的解集即是y<0的解集,
    ∴x<-1或x>1.故选D.
    2、A
    【解析】
    用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
    【详解】
    39000000000=3.9×1.
    故选A.
    【点睛】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    3、B
    【解析】
    试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.
    考点:简单组合体的三视图.
    4、A
    【解析】
    根据图形,结合题目所给的运算法则列出方程组.
    【详解】
    图2所示的算筹图我们可以表述为:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
    5、C
    【解析】
    分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.
    【详解】
    A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=时,y有最小值,故此选项正确,不合题意.所以选C.
    【点睛】
    此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.
    6、B
    【解析】
    直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.
    【详解】
    A. m2+m2=2m2,故此选项错误;
    B. 2m2n÷mn=4m,正确;
    C. (3mn2)2=9m2n4,故此选项错误;
    D. (m+2)2=m2+4m+4,故此选项错误.
    故答案选:B.
    【点睛】
    本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.
    7、C
    【解析】
    先解每一个不等式,再根据结果判断数轴表示的正确方法.
    【详解】
    解:由不等式①,得3x>5-2,解得x>1,
    由不等式②,得-2x≥1-5,解得x≤2,
    ∴数轴表示的正确方法为C.
    故选C.
    【点睛】
    考核知识点:解不等式组.
    8、C
    【解析】
    【分析】根据题意,数据x1,x2,…,xn的平均数设为a,则数据2x1,2x2,…,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案.
    【详解】根据题意,数据x1,x2,…,xn的平均数设为a,
    则数据2x1,2x2,…,2xn的平均数为2a,
    根据方差公式:=3,

    =
    =4×
    =4×3
    =12,
    故选C.
    【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.
    9、B
    【解析】
    【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
    【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
    故选B.
    【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
    10、A
    【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算a⋆b=2ab对式子(a+1)⋆a -(b+1)⋆b用新定义运算展开整理后代入进行求解即可.
    【详解】∵a,b是方程x2+x-m=0(m>0)的两个根,
    ∴a+b=-1,
    ∵定义运算:a⋆b=2ab,
    ∴(a+1)⋆a -(b+1)⋆b
    =2a(a+1)-2b(b+1)
    =2a2+2a-2b2-2b
    =2(a+b)(a-b)+2(a-b)
    =-2(a-b)+2(a-b)=0,
    故选A.
    【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程.
    【详解】
    解:由题意可知,矩形的周长为60cm,
    ∴矩形的另一边为:,
    ∵面积为 216,

    故答案为:.
    【点睛】
    本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.
    12、
    【解析】
    根据二次根式的被开方数为非负数求解即可.
    【详解】
    由题意可得:,解得:.
    所以答案为.
    【点睛】
    本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.
    13、4
    【解析】
    分析:首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
    详解:设△ABP中AB边上的高是h.
    ∵S△PAB=S矩形ABCD,
    ∴AB•h=AB•AD,
    ∴h=AD=2,
    ∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.

    在Rt△ABE中,∵AB=4,AE=2+2=4,
    ∴BE=,
    即PA+PB的最小值为4.
    故答案为4.
    点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
    14、6.4
    【解析】
    根据平行投影,同一时刻物长与影长的比值固定即可解题.
    【详解】
    解:由题可知:,
    解得:树高=6.4米.
    【点睛】
    本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.
    15、50
    【解析】
    根据BC是直径得出∠B=∠D=40°,∠BAC=90°,再根据半径相等所对应的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC
    【详解】
    ∵BC是直径,∠D=40°,
    ∴∠B=∠D=40°,∠BAC=90°.
    ∵OA=OB,
    ∴∠BAO=∠B=40°,
    ∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.
    故答案为:50
    【点睛】
    本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键
    16、1
    【解析】
    根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
    【详解】
    根据题意,作△EFC,

    树高为CD,且∠ECF=90°,ED=3,FD=12,
    易得:Rt△EDC∽Rt△DCF,
    有,即DC2=ED×FD,
    代入数据可得DC2=31,
    DC=1,
    故答案为1.

    三、解答题(共8题,共72分)
    17、 (1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.
    【解析】
    (1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;
    (2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.
    ①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;
    (3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,然后讨论:x==3时和x=>3时两种情况m取值即可求解.
    【详解】
    解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,
    解得:a=﹣360,b=101,
    故答案为0,﹣360,101;
    (2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,
    ∴当x=2时,Wmin=720;
    ②当x≥3时,W=90x2,
    W随x最大而最大,
    当x=3时,Wmin=810>720,
    ∴当距离为2公里时,配套工程费用最少;
    (3)∵0≤x≤3,
    W=mx2﹣360x+101,(m>0),其对称轴x=,
    当x=≤3时,即:m≥60,
    Wmin=m()2﹣360()+101,
    ∵Wmin≤675,解得:60≤m≤1;
    当x=>3时,即m<60,
    当x=3时,Wmin=9m<675,
    解得:0<m<60,
    故:0<m≤1.
    【点睛】
    本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.
    18、⊙O的半径为.
    【解析】
    如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
    【详解】
    解:如图,连接OA.交BC于H.

    ∵点A为的中点,
    ∴OA⊥BD,BH=DH=4,
    ∴∠AHC=∠BHO=90°,
    ∵,AC=9,
    ∴AH=3,
    设⊙O的半径为r,
    在Rt△BOH中,∵BH2+OH2=OB2,
    ∴42+(r﹣3)2=r2,
    ∴r=,
    ∴⊙O的半径为.
    【点睛】
    本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    19、(1)-1;(2)x1=2+,x2=2﹣
    【解析】
    (1)按照实数的运算法则依次计算即可;
    (2)利用配方法解方程.
    【详解】
    (1)原式=﹣2﹣1+2×=﹣1;
    (2)x2﹣4x+2=0,
    x2﹣4x=﹣2,
    x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
    ∴x﹣2=±,
    ∴x1=2+,x2=2﹣.
    【点睛】
    此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
    20、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小
    【解析】
    (1)只需运用待定系数法就可求出二次函数的解析式;
    (1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
    (3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
    【详解】
    (1)把A(1,0),B(8,6)代入,得

    解得:
    ∴二次函数的解析式为;
    (1)由,得
    二次函数图象的顶点坐标为(4,﹣1).
    令y=0,得,
    解得:x1=1,x1=6,
    ∴D点的坐标为(6,0);
    (3)二次函数的对称轴上存在一点C,使得的周长最小.
    连接CA,如图,
    ∵点C在二次函数的对称轴x=4上,
    ∴xC=4,CA=CD,
    ∴的周长=CD+CB+BD=CA+CB+BD,
    根据“两点之间,线段最短”,可得
    当点A、C、B三点共线时,CA+CB最小,
    此时,由于BD是定值,因此的周长最小.
    设直线AB的解析式为y=mx+n,
    把A(1,0)、B(8,6)代入y=mx+n,得

    解得:
    ∴直线AB的解析式为y=x﹣1.
    当x=4时,y=4﹣1=1,
    ∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.

    【点睛】
    本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.
    21、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
    【解析】
    (1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
    从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
    【详解】
    证明:如图①


    是的中线,



    (或证明四边形ABDE是平行四边形,从而得到)
    【探究】
    四边形ABPE是平行四边形.
    方法一:如图②,
    证明:过点D作交直线于点,


    ∴四边形是平行四边形,

    ∵由问题结论可得

    ∴四边形是平行四边形.
    方法二:如图③,

    证明:延长BP交直线CF于点N,





    ∵是的中线,



    ∴四边形是平行四边形.
    【应用】
    如图④,延长BP交CF于H.

    由上面可知,四边形是平行四边形,


    ∴四边形APHE是平行四边形,











    【点睛】
    此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
    22、(1)200,(2)图见试题解析 (3)540
    【解析】
    试题分析:(1)根据A级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;
    (2)根据总人数求出C级的人数,然后补全条形统计图即可;
    (3)1减去A、B两级所占的百分比乘以360°即可得出结论.
    试题解析::(1)调查的学生人数为:=200名;
    (2)C级学生人数为:200-50-120=30名,
    补全统计图如图;

    (3)学习态度达标的人数为:360×[1-(25%+60%]=54°.
    答:求出图②中C级所占的圆心角的度数为54°.
    考点:条形统计图和扇形统计图的综合运用
    23、 (1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
    【解析】
    (1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;
    (2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 •2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.
    【详解】
    解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;
    (2)设P(t,﹣t2+4t﹣3),
    因为S△PAB=1,AB=3﹣1=2,
    所以•2•|﹣t2+4t﹣3|=1,
    当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);
    当﹣t2+4t﹣3=﹣1时,t1=2+,t2=2﹣,此时P点坐标为(2+,﹣1)或(2﹣,﹣1),
    所以满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).
    【点睛】
    本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
    24、(1);(2)
    【解析】
    (1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;
    (2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.
    【详解】
    解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,
    ∴甲投放了一袋是餐厨垃圾的概率是,
    故答案为:;
    (2)记这四类垃圾分别为A、B、C、D,
    画树状图如下:

    由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,
    所以投放的两袋垃圾同类的概率为=.
    【点睛】
    本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    浙江省温州市苍南县市级名校2022年中考数学最后一模试卷含解析:

    这是一份浙江省温州市苍南县市级名校2022年中考数学最后一模试卷含解析,共22页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。

    2022年浙江省台州市椒江区市级名校中考数学模试卷含解析:

    这是一份2022年浙江省台州市椒江区市级名校中考数学模试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年山东省济南实验市级名校中考数学最后一模试卷含解析:

    这是一份2022年山东省济南实验市级名校中考数学最后一模试卷含解析,共21页。试卷主要包含了若点A,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map