


浙江省台州市黄岩区2021-2022学年中考数学最后一模试卷含解析
展开
这是一份浙江省台州市黄岩区2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.等腰三角形一边长等于5,一边长等于10,它的周长是( )
A.20 B.25 C.20或25 D.15
2.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )
A. B. C. D.
3.估算的值是在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
4.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
确的是( )
A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1
5.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )
A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
6.下列图形中,线段MN的长度表示点M到直线l的距离的是( )
A. B. C. D.
7.一、单选题
二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc4ac;③4a+2b+c0
∴abc0
∴4a+2b+c>0,
故错误;
④∵二次函数图象的对称轴是直线x=1,
∴2a+b=0,
故正确.
综上所述,正确的结论有3个.
故选B.
8、C
【解析】
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.
故选C.
9、C
【解析】
根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.
【详解】
解:∵图1中棋子有5=1+2+1×2个,
图2中棋子有10=1+2+3+2×2个,
图3中棋子有16=1+2+3+4+3×2个,
…
∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,
故选C.
【点睛】
本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
10、D
【解析】
试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
求出黑色区域面积与正方形总面积之比即可得答案.
【详解】
图中有9个小正方形,其中黑色区域一共有3个小正方形,
所以随意投掷一个飞镖,击中黑色区域的概率是,
故答案为.
【点睛】
本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.
12、
【解析】
过C作CD⊥x轴于点D,则可证得△AOB≌△CDA,可求得CD和OD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式.
【详解】
如图,过C作CD⊥x轴于点D.
∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.
在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).
∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),设直线BC解析式为y=kx+b,∴,解得:,∴直线BC解析式为yx+1.
故答案为yx+1.
【点睛】
本题考查了待定系数法及全等三角形的判定和性质,构造全等三角形求得C点坐标是解题的关键.
13、或.
【解析】
由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.
(1) 当∠ONM=90°时,则DN⊥BC.
过点E作EF⊥BC,垂足为F.(如图)
∵在Rt△ABC中,∠A=90°,AB=AC,
∴∠C=45°,
∵BC=20,
∴在Rt△ABC中,,
∵DE是△ABC的中位线,
∴,
∴在Rt△CFE中,,.
∵BM=3,BC=20,FC=5,
∴MF=BC-BM-FC=20-3-5=12.
∵EF=5,MF=12,
∴在Rt△MFE中,,
∵DE是△ABC的中位线,BC=20,
∴,DE∥BC,
∴∠DEM=∠EMF,即∠DEO=∠EMF,
∴,
∴在Rt△ODE中,.
(2) 当∠MON=90°时,则DN⊥ME.
过点E作EF⊥BC,垂足为F.(如图)
∵EF=5,MF=12,
∴在Rt△MFE中,,
∴在Rt△MFE中,,
∵∠DEO=∠EMF,
∴,
∵DE=10,
∴在Rt△DOE中,.
综上所述,DO的长是或.
故本题应填写:或.
点睛:
在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.
14、1
【解析】
先求平均数,再根据方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]计算即可.
【详解】
解:∵=(5+6+7+4+3)÷5=5,
∴数据的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.
故答案为:1.
考点:方差.
15、﹣3<x<1
【解析】
根据第四象限内横坐标为正,纵坐标为负可得出答案.
【详解】
∵点P(2x-6,x-5)在第四象限,
∴
解得-3<x<1.故答案为-3<x<1.
【点睛】
本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
16、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
【点睛】
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
17、1
【解析】
根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.
【详解】
解:原式=
【点睛】
本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.
三、解答题(共7小题,满分69分)
18、x﹣1,1.
【解析】
先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可.
【详解】
解:原式==x﹣1,
根据分式的意义可知,x≠0,且x≠±1,
当x=2时,原式=2﹣1=1.
【点睛】
本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零.
19、 (1)60人;(2)144°;(3)288人.
【解析】
等级人数除以其所占百分比即可得;
先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,继而乘以即可得;
总人数乘以A、B等级百分比之和即可得.
【详解】
解:本次被抽取参加英语口语测试的学生共有人;
级所占百分比为,
级对应的百分比为,
则扇形统计图中 C 级的圆心角度数为;
人,
答:估计英语口语达到 B级以上包括B 级的学生人数为288人.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体.
20、(1)y=-,y=-2x-4(2)1
【解析】
(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
【详解】
(1)将A(﹣3,m+1)代入反比例函数y=得,
=m+1,
解得m=﹣6,
m+1=﹣6+1=2,
所以,点A的坐标为(﹣3,2),
反比例函数解析式为y=﹣,
将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
解得n=1,
所以,点B的坐标为(1,﹣6),
将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,
,
解得,
所以,一次函数解析式为y=﹣2x﹣4;
(2)设AB与x轴相交于点C,
令﹣2x﹣4=0解得x=﹣2,
所以,点C的坐标为(﹣2,0),
所以,OC=2,
S△AOB=S△AOC+S△BOC,
=×2×2+×2×6,
=2+6,
=1.
考点:反比例函数与一次函数的交点问题.
21、(1)x=;(2)x>3;数轴见解析;
【解析】
(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
(2)先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
解得:
检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
所以原方程的解是;
(2) ,
∵解不等式①得:x>1,
解不等式②得:x>3,
∴不等式组的解集为x>3,
在数轴上表示为:.
【点睛】
本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.
22、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
(3)由图可知甲、乙速度相同;
(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
【详解】
解:(1)由图象可知,A、B两点之间的距离是70米,
甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
(2)设线段EF所在直线的函数解析式为:y=kx+b,
∵1×(95﹣60)=35,
∴点F的坐标为(3,35),
则,解得,
∴线段EF所在直线的函数解析式为y=35x﹣70;
(3)∵线段FG∥x轴,
∴甲、乙两机器人的速度都是60米/分;
(4)A、C两点之间的距离为70+60×7=490米;
(5)设前2分钟,两机器人出发x分钟相距21米,
由题意得,60x+70﹣95x=21,解得,x=1.2,
前2分钟﹣3分钟,两机器人相距21米时,
由题意得,35x﹣70=21,解得,x=2.1.
4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
设线段GH所在直线的函数解析式为:y=kx+b,则,
,解得,
则直线GH的方程为y=x+,
当y=21时,解得x=4.6,
答:两机器人出发1.2分或2.1分或4.6分相距21米.
【点睛】
本题考查了一次函数的应用,读懂图像是解题关键..
23、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
【详解】
(1)将点E代入直线解析式中,
0=﹣×4+m,
解得m=3,
∴解析式为y=﹣x+3,
∴C(0,3),
∵B(3,0),
则有,
解得,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4),
设直线BD的解析式为y=kx+b,代入点B、D,
,
解得,
∴直线BD的解析式为y=﹣2x+6,
则点M的坐标为(x,﹣2x+6),
∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
∴当x=时,S有最大值,最大值为.
(3)存在,
如图所示,
设点P的坐标为(t,0),
则点G(t,﹣t+3),H(t,﹣t2+2t+3),
∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
CG==t,
∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
而HG∥y轴,
∴HG∥CF,HG=HF,CG=CF,
∠GHC=∠CHF,
∴∠FCH=∠CHG,
∴∠FCH=∠FHC,
∴∠GCH=∠GHC,
∴CG=HG,
∴|t2﹣t|=t,
当t2﹣t=t时,
解得t1=0(舍),t2=4,
此时点P(4,0).
当t2﹣t=﹣t时,
解得t1=0(舍),t2=,
此时点P(,0).
综上,点P的坐标为(4,0)或(,0).
【点睛】
此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
24、 (1);(2)
【解析】
1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;
(2)画树状图得:
∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,
∴恰好选中甲、乙两人的概率为:
【点睛】
此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
相关试卷
这是一份数学:浙江省台州市黄岩区2024年中考一模试题(解析版),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省台州市黄岩区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,四象限B. 图象过点,解答题等内容,欢迎下载使用。
这是一份浙江省台州市黄岩区2023年中考数学一模试卷,共4页。