


浙江省台州市天台县2022年中考一模数学试题含解析
展开
这是一份浙江省台州市天台县2022年中考一模数学试题含解析,共18页。
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若实数 a,b 满足|a|>|b|,则与实数 a,b 对应的点在数轴上的位置可以是( )A. B. C. D.2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10 B.14 C.20 D.223.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( )A. cm B.2 cm C.2cm D. cm4.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( )A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1075.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )A. B.C. D.6.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A. B. C. D.7.已知一个正多边形的一个外角为36°,则这个正多边形的边数是( )A.8 B.9 C.10 D.118.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )A. B. C. D.9.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是( )A.1个 B.2个 C.3个 D.4个10.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是( )A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,已知等边△ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__.12.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是( )A. B. C. D.13.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数1004008001 0002 0005 000发芽种子粒数853186527931 6044 005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).15.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).16.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=_____.17.不等式2x-5<7-(x-5)的解集是______________.三、解答题(共7小题,满分69分)18.(10分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.19.(5分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为3,求BC的长.20.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.21.(10分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).①若点A(-2,-1),则d(P,A)= ;②若点B(b,2),且d(P,B)=5,则b= ;③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.22.(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.23.(12分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O, (1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,①求证:BE′+BF=2,②求出四边形OE′BF的面积. 24.(14分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远, 只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.2、B【解析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:1.故选B.【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解.3、B【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.4、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将4670000用科学记数法表示为4.67×106,故选B.【点睛】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.5、A【解析】设身高GE=h,CF=l,AF=a,当x≤a时,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常数,∴自变量x的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.故选A.6、B【解析】分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:∵等边三角形ABC的边长为3,N为AC的三等分点,∴AN=1。∴当点M位于点A处时,x=0,y=1。①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。故选B。7、C【解析】试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.考点:多边形的内角和外角.8、C【解析】试题解析:∵四边形ABCD是平行四边形, 故选C.9、C【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y轴的负半轴,∴c<1;故①正确;②对称轴∴ ∴b<1;故②正确;③根据图示知,二次函数与x轴有两个交点,所以,即,故③错误④故本选项正确.正确的有3项故选C.【点睛】本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置.10、C【解析】
根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
所以这些运动员跳高成绩的中位数是1.1.
故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数. 二、填空题(共7小题,每小题3分,满分21分)11、π.【解析】
由等边三角形的性质证明△AEB≌△CFA可以得出∠APB=120°,点P的路径是一段弧,由弧线长公式就可以得出结论.【详解】:∵△ABC为等边三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中, ,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴当AE=CF时,点P的路径是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
点P的路径是l=,
故答案为.【点睛】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等.12、A【解析】
该班男生有x人,女生有y人.根据题意得:,故选D.考点:由实际问题抽象出二元一次方程组.13、1【解析】
先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.【详解】∵a,b分别是1的两个平方根,∴ ∵a,b分别是1的两个平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案为:1.【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.14、1.2【解析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15、【解析】
解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD•sin∠ADB=60×=(m).故答案是:.16、 【解析】
根据垂径定理求得 然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.【详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴又∵ ∴ ∴ ∴S阴影=S扇形ODB−S△DOE+S△BEC 故答案为:.【点睛】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.17、x<【解析】解:去括号得:2x-5<7-x+5,移项、合并得:3x<17,解得:x<.故答案为:x<. 三、解答题(共7小题,满分69分)18、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.19、 (1)证明见解析;(2)BC=1.【解析】
(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;
(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【详解】(1)连接OB,∵PB是⊙O的切线,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB,∴∠OBA=∠BAO,∴∠PBA=∠C; (2)∵⊙O的半径是3 ,∴OB=3,AC=6,∵OP∥BC,∴∠BOP=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠BOP=∠C,∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,∴=,∴BC=1.【点睛】本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.20、(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解析】
(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【详解】证明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.21、(1)① 6,② 2或4,③ 1<m<4;(2)或.【解析】
(1)①根据“折线距离”的定义直接列式计算;②根据“折线距离”的定义列出方程,求解即可;③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围.【详解】解:(1) ①② ∴ ∴ b=2或4 ③ ,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4 (2)设E(x,y),则,如图,若点E在⊙F上,则.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.22、(1)证明见解析(2) 【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:,即,解得:t=,即运动时间为秒时,四边形PBQD是菱形.考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.23、 (1);(2)①2,②【解析】分析:(1)重合部分是等边三角形,计算出边长即可.①证明:在图3中,取AB中点E,证明≌,即可得到 ,②由①知,在旋转过程60°中始终有≌四边形的面积等于 =.详解:(1)∵四边形为菱形, ∴∴为等边三角形∴ ∵AD// ∴ ∴为等边三角形,边长 ∴重合部分的面积:①证明:在图3中,取AB中点E,由上题知, ∴ 又∵ ∴≌,∴ ∴,②由①知,在旋转过程60°中始终有≌ ∴四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.24、【解析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:,,.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
相关试卷
这是一份浙江省台州市天台县2022-2023学年数学九上期末预测试题含解析,共23页。试卷主要包含了给出下列一组数,如图,点是上的点,,则是等内容,欢迎下载使用。
这是一份2023年浙江省台州市天台县中考数学一模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省台州市天台县中考一模数学试题(含解析),共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。