终身会员
搜索
    上传资料 赚现金

    浙江省温州市乐清市2021-2022学年中考数学最后一模试卷含解析

    立即下载
    加入资料篮
    浙江省温州市乐清市2021-2022学年中考数学最后一模试卷含解析第1页
    浙江省温州市乐清市2021-2022学年中考数学最后一模试卷含解析第2页
    浙江省温州市乐清市2021-2022学年中考数学最后一模试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省温州市乐清市2021-2022学年中考数学最后一模试卷含解析

    展开

    这是一份浙江省温州市乐清市2021-2022学年中考数学最后一模试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,一组数据,3的倒数是,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.不等式组的正整数解的个数是(  )
    A.5 B.4 C.3 D.2
    2.化简的结果是( )
    A.±4 B.4 C.2 D.±2
    3.一个多边形的每一个外角都等于72°,这个多边形是( )
    A.正三角形 B.正方形 C.正五边形 D.正六边形
    4.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    5.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    6.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是(  )
    A.2 B.3 C.5 D.7
    7.3的倒数是( )
    A. B. C. D.
    8.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )

    A.4,30° B.2,60° C.1,30° D.3,60°
    9.若关于x的方程 是一元二次方程,则m的取值范围是( )
    A.. B.. C. D..
    10.下列运算正确的是(  )
    A.a3•a2=a6 B.(a2)3=a5 C. =3 D.2+=2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______

    12.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________
    13.用一条长 60 cm 的绳子围成一个面积为 216的矩形.设矩形的一边长为 x cm,则可列方程为______.
    14.把多项式x3﹣25x分解因式的结果是_____
    15.如图,已知点C为反比例函数上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.

    16.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.

    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).
    (1)求该抛物线的函数表达式.
    (2)求直线AB关于x轴对称的直线的函数表达式.
    (3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM < PN时,求点P的横坐标的取值范围.

    18.(8分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.
    19.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.

    20.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
    21.(8分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
    (1)求证:BC是∠ABE的平分线;
    (2)若DC=8,⊙O的半径OA=6,求CE的长.
    22.(10分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
    种类
    A
    B
    C
    D
    E
    F
    上学方式
    电动车
    私家车
    公共交通
    自行车
    步行
    其他
    某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图

    根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
    23.(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.

    (1)判断:一个内角为120°的菱形  等距四边形.(填“是”或“不是”)
    (2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为   端点均为非等距点的对角线长为  
    (3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.
    24.已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
    (1)当为t何值时,PQ∥BC;
    (2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
    (3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的正整数.
    【详解】
    解不等式1-2x<3,得:x>-1,
    解不等式≤2,得:x≤3,
    则不等式组的解集为-1<x≤3,
    所以不等式组的正整数解有1、2、3这3个,
    故选C.
    【点睛】
    本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.
    2、B
    【解析】
    根据算术平方根的意义求解即可.
    【详解】
    4,
    故选:B.
    【点睛】
    本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.
    3、C
    【解析】
    任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.
    【详解】
    360°÷72°=1,则多边形的边数是1.
    故选C.
    【点睛】
    本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.
    4、B
    【解析】
    根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.
    【详解】
    解:由数轴,得a=-3.5,b=-2,c=0,d=2,
    ①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;
    故选B.
    【点睛】
    本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.
    5、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    6、C
    【解析】
    分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
    详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
    点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
    7、C
    【解析】
    根据倒数的定义可知.
    解:3的倒数是.
    主要考查倒数的定义,要求熟练掌握.需要注意的是:
    倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
    倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    8、B
    【解析】
    试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,
    ∴∠A′B′C=60°,AB=A′B′=A′C=4,
    ∴△A′B′C是等边三角形,
    ∴B′C=4,∠B′A′C=60°,
    ∴BB′=6﹣4=2,
    ∴平移的距离和旋转角的度数分别为:2,60°
    故选B.
    考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定
    9、A
    【解析】
    根据一元二次方程的定义可得m﹣1≠0,再解即可.
    【详解】
    由题意得:m﹣1≠0,
    解得:m≠1,
    故选A.
    【点睛】
    此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
    10、C
    【解析】
    结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项.
    【详解】
    解:A. a3×a2=a5,原式计算错误,故本选项错误;
    B. (a2)3=a6,原式计算错误,故本选项错误;
    C. =3,原式计算正确,故本选项正确;
    D. 2和不是同类项,不能合并,故本选项错误.
    故选C.
    【点睛】
    本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
    【解析】
    根据图形的旋转和平移性质即可解题.
    【详解】
    解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
    【点睛】
    本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
    12、1
    【解析】
    设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.
    【详解】
    设这个正多边的外角为x°,由题意得:
    x+5x=180,
    解得:x=30,
    360°÷30°=1.
    故答案为:1.
    【点睛】
    此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.
    13、
    【解析】
    根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程.
    【详解】
    解:由题意可知,矩形的周长为60cm,
    ∴矩形的另一边为:,
    ∵面积为 216,

    故答案为:.
    【点睛】
    本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.
    14、x(x+5)(x﹣5).
    【解析】
    分析:首先提取公因式x,再利用平方差公式分解因式即可.
    详解:x3-25x
    =x(x2-25)
    =x(x+5)(x-5).
    故答案为x(x+5)(x-5).
    点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    15、1
    【解析】
    解:由于点C为反比例函数上的一点,
    则四边形AOBC的面积S=|k|=1.
    故答案为:1.
    16、
    【解析】
    根据直角三角形的中点性质结合勾股定理解答即可.
    【详解】
    解:,点F是AD的中点,

    .
    故答案为: .
    【点睛】
    此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)(2)(3)
    【解析】
    (1)根据待定系数法,可得二次函数的解析式;
    (2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;
    (3)根据PM<PN,可得不等式,利用绝对值的性质化简解不等式,可得答案.
    【详解】
    (1)将A(﹣1,1),B(2,5)代入函数解析式,得:
    ,解得:,抛物线的解析式为y=x2﹣2x﹣3;
    (2)设AB的解析式为y=kx+b,将A(﹣1,1),B(2,5)代入函数解析式,得:
    ,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=﹣(x+1),化简,得:y=﹣x﹣1;
    (3)设M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.
    ∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.
    ∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.
    故当PM<PN时,求点P的横坐标xP的取值范围是2<xP<2.
    【点睛】
    本题考查了二次函数综合题.解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式.
    18、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
    【解析】
    设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
    【详解】
    设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,
    根据题意得:﹣=3,
    解得:x1=161,x2=﹣264(不合题意,舍去),
    经检验,x=161是原方程的解,
    ∴x+99=264,1320÷(x+99)=1.
    答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
    【点睛】
    本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
    19、证明见解析.
    【解析】
    【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.
    【详解】∵BE=CF,
    ∴BE+EF=CF+EF,
    ∴BF=CE,
    在△ABF和△DCE中

    ∴△ABF≌△DCE(SAS),
    ∴∠GEF=∠GFE,
    ∴EG=FG.
    【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
    20、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.
    【解析】
    分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
    (2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.
    详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
    根据题意得:

    解得:.
    答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
    (2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
    答:打折后购买这批粽子比不打折节省了3640元.
    点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.
    21、(1)证明见解析;(2)4.1.
    【解析】
    试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
    (2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
    试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
    (2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
    考点:切线的性质.
    22、 (1)450、63; ⑵36°,图见解析; (3)2460 人.
    【解析】
    (1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.
    (2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;
    (3)由总人数乘以“绿色出行”的百分比,即可得到结果.
    【详解】
    (1) 参与本次问卷调查的学生共有:(人);
    选择类的人数有:
    故答案为450、63;
    (2)类所占的百分比为:
    类对应的扇形圆心角的度数为:
    选择类的人数为:(人).
    补全条形统计图为:

    (3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    23、(1)是;(2)见解析;(3)150°.
    【解析】
    (1)由菱形的性质和等边三角形的判定与性质即可得出结论;
    (2)根据题意画出图形,由勾股定理即可得出答案;
    (3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.
    【详解】
    解:(1)一个内角为120°的菱形是等距四边形;
    故答案为是;
    (2)如图2,图3所示:
    在图2中,由勾股定理得:
    在图3中,由勾股定理得:
    故答案为
    (3)解:连接BD.如图1所示:
    ∵△ABE与△CDE都是等腰直角三角形,
    ∴DE=EC,AE=EB,
    ∠DEC+∠BEC=∠AEB+∠BEC,
    即∠AEC=∠DEB,
    在△AEC和△BED中, ,
    ∴△AEC≌△BED(SAS),
    ∴AC=BD,
    ∵四边形ABCD是以A为等距点的等距四边形,
    ∴AD=AB=AC,
    ∴AD=AB=BD,
    ∴△ABD是等边三角形,
    ∴∠DAB=60°,
    ∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,
    在△AED和△AEC中,
    ∴△AED≌△AEC(SSS),
    ∴∠CAE=∠DAE=15°,
    ∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,
    ∵AB=AC,AC=AD,

    ∴∠BCD=∠ACB+∠ACD=75°+75°=150°.

    【点睛】
    本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
    24、(1)当t=时,PQ∥BC;(2)﹣(t﹣)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQP′C为菱形
    【解析】
    (1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;
    (2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;
    (3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即可解决问题;
    【详解】
    (1)在Rt△ABC中,AB===10,
    BP=2t,AQ=t,则AP=10﹣2t,
    ∵PQ∥BC,
    ∴△APQ∽△ABC,
    ∴=,即=,
    解得t=,
    ∴当t=时,PQ∥BC.
    (2)过点P作PD⊥AC于D,则有△APD∽△ABC,

    ∴=,即=,
    ∴PD=6﹣t,
    ∴y=t(6﹣t)=﹣(t﹣)2+,
    ∴当t=时,y有最大值为.
    (3)存在.
    理由:连接PP′,交AC于点O.

    ∵四边形PQP′C为菱形,
    ∴OC=CQ,
    ∵△APO∽△ABC,
    ∴=,即=,
    ∴OA=(5﹣t),
    ∴8﹣(5﹣t)=(8﹣t),
    解得t=,
    ∴当t=时,四边形PQP′C为菱形.
    【点睛】
    本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.

    相关试卷

    2024年浙江省温州市乐清市、瓯海区、永嘉县中考数学二模试卷(含解析):

    这是一份2024年浙江省温州市乐清市、瓯海区、永嘉县中考数学二模试卷(含解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省乐清市温州市2023届中考(一模)数学考试试题(含解析):

    这是一份浙江省乐清市温州市2023届中考(一模)数学考试试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    浙江省温州市鹿城区温州市实验中学2021-2022学年中考数学最后一模试卷含解析:

    这是一份浙江省温州市鹿城区温州市实验中学2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了如图,点A所表示的数的绝对值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map