浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列图形中,是正方体表面展开图的是( )
A. B. C. D.
2.实数的倒数是( )
A. B. C. D.
3.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为( )
A.5cm B.5cm或3cm C.7cm或3cm D.7cm
4.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A. B. C. D.
5.图为一根圆柱形的空心钢管,它的主视图是( )
A. B. C. D.
6.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则△ABD的面积是( )
A.18 B.36 C.54 D.72
7.如图: 在中,平分,平分,且交于,若,则等于( )
A.75 B.100 C.120 D.125
8.一、单选题
小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是( )
A. B. C. D.
9.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )
A. B. C. D.
10.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是( )
A. B. C. D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.点A(-2,1)在第_______象限.
12.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为_____.
13.如图,已知,,则________.
14.若,则=_____.
15.关于x的不等式组的整数解共有3个,则a的取值范围是_____.
16.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.
三、解答题(共8题,共72分)
17.(8分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.
(1)求两种机器人每台每小时各分拣多少件包裹;
(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?
18.(8分)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ.
(1)当∠POQ= 时,PQ有最大值,最大值为 ;
(2)如图2,若P是OB中点,且QP⊥OB于点P,求的长;
(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积.
19.(8分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)
根据上图提供的信息回答下列问题:
(1)被抽查的居民中,人数最多的年龄段是 岁;
(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.
注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.
20.(8分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
(2)当直线l与AD边有公共点时,求t的取值范围.
21.(8分)甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数
众数
中位数
方差
甲
8
8
0.4
乙
9
3.2
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .(填“变大”、“变小”或“不变”).
22.(10分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.
(I)如图1,若α=30°,求点B′的坐标;
(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).
23.(12分)(1)解方程:x2﹣5x﹣6=0;
(2)解不等式组:.
24.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
利用正方体及其表面展开图的特点解题.
【详解】
解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
故选C.
【点睛】
本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
2、D
【解析】
因为=,
所以的倒数是.
故选D.
3、B
【解析】
(1)如图1,当点C在点A和点B之间时,
∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
∴MB=AB=4cm,BN=BC=1cm,
∴MN=MB-BN=3cm;
(2)如图2,当点C在点B的右侧时,
∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,
∴MB=AB=4cm,BN=BC=1cm,
∴MN=MB+BN=5cm.
综上所述,线段MN的长度为5cm或3cm.
故选B.
点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.
4、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
5、B
【解析】
试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,
故选B.
6、B
【解析】
根据题意可知AP为∠CAB的平分线,由角平分线的性质得出CD=DH,再由三角形的面积公式可得出结论.
【详解】
由题意可知AP为∠CAB的平分线,过点D作DH⊥AB于点H,
∵∠C=90°,CD=1,
∴CD=DH=1.
∵AB=18,
∴S△ABD=AB•DH=×18×1=36
故选B.
【点睛】
本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
7、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
8、C
【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
可列方程得,
故选C.
【点睛】
本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
9、A
【解析】
试题分析:观察图形可知,该几何体的主视图是.故选A.
考点:简单组合体的三视图.
10、C
【解析】
连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.
【详解】
解:如图,连接OB,
∵PB切⊙O于点B,
∴∠OBP=90°,
∵BP=6,∠P=30°,
∴∠POB=60°,OD=OB=BPtan30°=6×=2,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵OD⊥AB,
∴∠OCB=90°,
∴∠OBC=30°,
则OC=OB=,
∴CD=.
故选:C.
【点睛】
本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、二
【解析】
根据点在第二象限的坐标特点解答即可.
【详解】
∵点A的横坐标-2<0,纵坐标1>0,
∴点A在第二象限内.
故答案为:二.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
12、
【解析】
由3AE=2EB,和EF∥BC,证明△AEF∽△ABC,得=,结合S△AEF=1,可知再由==,得==,再根据S△ADF= S△ADC即可求解.
【详解】
解:∵3AE=2EB,
设AE=2a,BE=3a,
∵EF∥BC,
∴△AEF∽△ABC,
∴=()2=()2=,
∵S△AEF=1,
∴S△ABC=,
∵四边形ABCD为平行四边形,
∴
∵EF∥BC,
∴===,
∴==,
∴S△ADF= S△ADC=,
故答案是:
【点睛】
本题考查了图形的相似和平行线分线段成比例定理,中等难度,找到相似比是解题关键.
13、65°
【解析】
根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
∵m∥n,∠1=105°,
∴∠3=180°−∠1=180°−105°=75°
∴∠α=∠2−∠3=140°−75°=65°
故答案为:65°.
【点睛】
此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.
14、
【解析】
=.
15、
【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解:由不等式①得:x>a,由不等式②得:x<1,所以不等式组的解集是a<x<1.
∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.
故答案为:﹣3≤a<﹣2.
【点睛】
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
16、(4,).
【解析】
由于函数y=(x>0常数k>0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.
【详解】
∵函数y=(x>0、常数k>0)的图象经过点A(1,1),
∴把(1,1)代入解析式得到1=,
∴k=1,
设B点的横坐标是m,
则AC边上的高是(m-1),
∵AC=1
∴根据三角形的面积公式得到×1•(m-1)=3,
∴m=4,把m=4代入y=,
∴B的纵坐标是,
∴点B的坐标是(4,).
故答案为(4,).
【点睛】
解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.
三、解答题(共8题,共72分)
17、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台
【解析】
(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;
(2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.
【详解】
(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,
由题意得,,
解得,,
答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;
(2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,
由题意得,30a+40(200﹣a)≥7000,
解得:a≤100,则最多应购进A种机器人100台.
【点睛】
本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.
18、(1);(2);(3)
【解析】
(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;
(2)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;
(3)先在Rt△B'OP中,OP2+ = ,解得OP= ,最后用面积的和差即可得出结论.
【详解】
解:(1)∵P是半径OB上一动点,Q是 上的一动点,
∴当PQ取最大时,点Q与点A重合,点P与点B重合,
此时,∠POQ=90°,PQ= ,
故答案为:90°,10 ;
(2)解:如图,连接OQ,
∵点P是OB的中点,
∴OP=OB= OQ.
∵QP⊥OB,
∴∠OPQ=90°
在Rt△OPQ中,cos∠QOP= ,
∴∠QOP=60°,
∴lBQ ;
(3)由折叠的性质可得, ,
在Rt△B'OP中,OP2+ =,
解得OP=,
S阴影=S扇形AOB﹣2S△AOP=.
【点睛】
此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键.
19、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;
【解析】
(1)取扇形统计图中所占百分比最大的年龄段即可;
(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.
【详解】
(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,
所以,人数最多的年龄段是11~30岁;
(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,
31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,
补全统计图如图.
【点睛】
本题考点:条形统计图与扇形统计图.
20、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
【解析】
(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
(2)当直线l经过点D时,设l的解析式代入数值解出即可
【详解】
(1)此时点A在直线l上.
∵BC=AB=2,点O为BC中点,
∴点B(-1,0),A(-1,2).
把点A的横坐标x=-1代入解析式y=2x+4,得
y=2,等于点A的纵坐标2,
∴此时点A在直线l上.
(2)由题意可得,点D(1,2),及点M(-2,0),
当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
∴解得
由(1)知,当直线l经过点A时,t=4.
∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.
【点睛】
本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
21、(1)填表见解析;(2)理由见解析;(3)变小.
【解析】
(1)根据众数、平均数和中位数的定义求解:
(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
【详解】
试题分析:
试题解析:解:(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.
故填表如下:
平均数
众数
中位数
方差
甲
8
8
8
0.4
乙
8
9
9
3.2
(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;
(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小.
考点:1.方差;2.算术平均数;3.中位数;4.众数.
22、(1)B'的坐标为(,3);(1)见解析 ;(3)﹣1.
【解析】
(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,
由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;
(1)证明∠BPA'=90即可;
(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【详解】
(Ⅰ)如图1,设A'B'与x轴交于点H,
∵OA=1,OB=1,∠AOB=90°,
∴∠ABO=∠B'=30°,
∵∠BOB'=α=30°,
∴BO∥A'B',
∵OB'=OB=1,
∴OH=OB'=,B'H=3,
∴点B'的坐标为(,3);
(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',
∴∠OBB'=∠OA'A=(180°﹣α),
∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,
∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,
即AA'⊥BB';
(Ⅲ)点P纵坐标的最小值为.
如图,作AB的中点M(1,),连接MP,
∵∠APB=90°,
∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).
∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【点睛】
本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.
23、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.
【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)先求出不等式的解集,再求出不等式组的解集即可.
【详解】
(1)x2﹣5x﹣6=0,
(x﹣6)(x+1)=0,
x﹣6=0,x+1=0,
x1=6,x2=﹣1;
(2)
∵解不等式①得:x≥﹣1,
解不等式②得:x<1,
∴不等式组的解集为﹣1≤x<1.
【点睛】
本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.
24、答案见解析
【解析】
由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.
浙江省金华市义乌市七校联考2021-2022学年中考数学猜题卷含解析: 这是一份浙江省金华市义乌市七校联考2021-2022学年中考数学猜题卷含解析,共19页。试卷主要包含了已知点A,如图1是一座立交桥的示意图等内容,欢迎下载使用。
山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析: 这是一份山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了已知,在中,,,下列结论中,正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。
江苏省南通崇川区四校联考2021-2022学年中考猜题数学试卷含解析: 这是一份江苏省南通崇川区四校联考2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了如图,在中,,,,则等于等内容,欢迎下载使用。