搜索
    上传资料 赚现金
    英语朗读宝

    重庆市长寿区名校2021-2022学年中考考前最后一卷数学试卷含解析

    重庆市长寿区名校2021-2022学年中考考前最后一卷数学试卷含解析第1页
    重庆市长寿区名校2021-2022学年中考考前最后一卷数学试卷含解析第2页
    重庆市长寿区名校2021-2022学年中考考前最后一卷数学试卷含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市长寿区名校2021-2022学年中考考前最后一卷数学试卷含解析

    展开

    这是一份重庆市长寿区名校2021-2022学年中考考前最后一卷数学试卷含解析,共28页。试卷主要包含了下列各式计算正确的是,下面说法正确的个数有,下列运算结果正确的是,如图,点A,B在双曲线y=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )

    A.0.2 B.0.25 C.0.4 D.0.5
    2.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3
    3.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )

    A. B. C. D.
    4.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?(  )

    A. B. C. D.
    5.下列各式计算正确的是( )
    A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
    6.下面说法正确的个数有(  )
    ①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
    ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
    ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
    ④如果∠A=∠B=∠C,那么△ABC是直角三角形;
    ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
    ⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
    A.3个 B.4个 C.5个 D.6个
    7.下列运算结果正确的是(  )
    A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a6
    8.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于(  )

    A. B.2 C.4 D.3
    9.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
    ①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
    ④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
    其中正确的是(  )

    A.①②③ B.①④⑤ C.①②④ D.③④⑤
    10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )

    A.4个 B.3个 C.2个 D.1个
    11.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是(  )

    A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
    C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
    12.下列运算正确的是 ( )
    A.2+a=3 B. =
    C. D.=
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是_____.

    14.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为  ▲  .
    15.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm2
    16.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.

    17.如图,在中,,点D、E分别在边、上,且,如果,,那么________.

    18.因式分解:4ax2﹣4ay2=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)观察下列等式:
    ①1×5+4=32;
    ②2×6+4=42;
    ③3×7+4=52;

    (1)按照上面的规律,写出第⑥个等式:_____;
    (2)模仿上面的方法,写出下面等式的左边:_____=502;
    (3)按照上面的规律,写出第n个等式,并证明其成立.
    20.(6分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.
    (1)求证:△GBE∽△GEF.
    (2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.
    (3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.

    21.(6分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
    月份x
    1
    2
    3
    4
    5
    6
    7
    8
    9
    价格y1(元/件)
    560
    580
    600
    620
    640
    660
    680
    700
    720
    随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
    (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
    (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.

    22.(8分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:
    (1)请用统计表表示我国2017年新能源汽车各类车型销量情况;
    (2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);

    (3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);
    (4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.
    23.(8分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

    (1)试说明DF是⊙O的切线;
    (2)若AC=3AE,求tanC.
    24.(10分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.

    25.(10分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
    (1)证明:∠C=∠D;
    (2)若∠BEF=140°,求∠C的度数;
    (3)若EF=2,tanB=3,求CE•CG的值.

    26.(12分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:
    表1全国森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)
    12200
    1150
    12500
    13400
    15894. 09
    17490.92
    19545.22
    20768.73
    森林覆盖率
    12.7%
    12%
    12.98%
    13.92%
    16.55%
    18.21%
    20.36%
    21.63%
    表2北京森林面积和森林覆盖率
    清查次数

    (1976年)

    (1981年)

    (1988年)

    (1993年)

    (1998年)

    (2003年)

    (2008年)

    (2013年)
    森林面积(万公顷)




    33.74
    37.88
    52.05
    58.81
    森林覆盖率
    11.2%
    8.1%
    12.08%
    14.99%
    18.93%
    21.26%
    31.72%
    35.84%
    (以上数据来源于中国林业网)
    请根据以上信息解答下列问题:
    (1)从第   次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    (2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;

    (3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到   万公顷(用含a和b的式子表示).
    27.(12分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.
    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
    下面是小东的探究过程,请补充完整:
    通过取点、画图、测量,得到了x与y的几组值,如下表:

    0

    1

    2

    3

    3





    6
    说明:补全表格时相关数据保留一位小数
    建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;
    结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
    【详解】
    解:设大正方形边长为2,则小正方形边长为1,
    因为面积比是相似比的平方,
    所以大正方形面积为4,小正方形面积为1,
    则针孔扎到小正方形(阴影部分)的概率是;
    故选:B.
    【点睛】
    本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    2、B
    【解析】
    根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.
    【详解】
    解:A、5ab﹣=4ab,此选项运算错误,
    B、a6÷a2=a4,此选项运算正确,
    C、,选项运算错误,
    D、(a2b)3=a6b3,此选项运算错误,
    故选B.
    【点睛】
    此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键.
    3、B
    【解析】
    解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF
    再由∠BDF+∠ADE=∠BDF+∠BFD=120º
    可得∠ADE=∠BFD,又因∠A=∠B=60º,
    根据两角对应相等的两三角形相似可得△AED∽△BDF
    所以,
    设AD=a,BD=2a,AB=BC=CA=3a,
    再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
    所以
    整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;
    把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,

    故选B.
    【点睛】
    本题考查相似三角形的判定及性质.
    4、C
    【解析】
    分析:求出扇形的圆心角以及半径即可解决问题;
    详解:∵∠A=60°,∠B=100°,
    ∴∠C=180°﹣60°﹣100°=20°,
    ∵DE=DC,
    ∴∠C=∠DEC=20°,
    ∴∠BDE=∠C+∠DEC=40°,
    ∴S扇形DBE=.
    故选C.
    点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
    5、C
    【解析】
    根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
    【详解】
    A. a+3a=4a,故不正确;
    B. (–a2)3=(-a)6 ,故不正确;
    C. a3·a4=a7 ,故正确;
    D. (a+b)2=a2+2ab+b2,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
    6、C
    【解析】
    试题分析:①∵三角形三个内角的比是1:2:3,
    ∴设三角形的三个内角分别为x,2x,3x,
    ∴x+2x+3x=180°,解得x=30°,
    ∴3x=3×30°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ②∵三角形的一个外角与它相邻的一个内角的和是180°,
    ∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
    ③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
    ∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
    ④∵∠A=∠B=∠C,
    ∴设∠A=∠B=x,则∠C=2x,
    ∴x+x+2x=180°,解得x=45°,
    ∴2x=2×45°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
    ∴三角形一个内角也等于另外两个内角的和,
    ∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
    ⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
    由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
    故选D.
    考点:1.三角形内角和定理;2.三角形的外角性质.
    7、B
    【解析】
    分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.
    【详解】
    A. a3+a4≠a7 ,不是同类项,不能合并,本选项错误;
    B. a4÷a3=a4-3=a;,本选项正确;
    C. a3•a2=a5;,本选项错误;
    D.(a3)3=a9,本选项错误.
    故选B
    【点睛】
    本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.
    8、B
    【解析】
    【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.
    【详解】点C在双曲线y=上,AC∥y轴,BC∥x轴,
    设C(a,),则B(3a,),A(a,),
    ∵AC=BC,
    ∴﹣=3a﹣a,
    解得a=1,(负值已舍去)
    ∴C(1,1),B(3,1),A(1,3),
    ∴AC=BC=2,
    ∴Rt△ABC中,AB=2,
    故选B.
    【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
    9、B
    【解析】
    由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
    【详解】
    解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
    ∴抛物线与x轴的另一交点坐标为(1,1),
    ∴抛物线过原点,结论①正确;
    ②∵当x=﹣1时,y>1,
    ∴a﹣b+c>1,结论②错误;
    ③当x<1时,y随x增大而减小,③错误;
    ④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
    ∴c=1,
    ∴b=﹣4a,c=1,
    ∴4a+b+c=1,
    当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
    ∴抛物线的顶点坐标为(2,b),结论④正确;
    ⑤∵抛物线的顶点坐标为(2,b),
    ∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
    综上所述,正确的结论有:①④⑤.
    故选B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    10、B
    【解析】
    解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
    ∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
    ∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
    ∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
    ∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
    故选:B.
    【点睛】
    本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
    11、D
    【解析】
    试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5
    考点:列方程
    点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.
    12、D
    【解析】
    根据整式的混合运算计算得到结果,即可作出判断.
    【详解】
    A、2与a 不是同类项,不能合并,不符合题意;
    B、 =,不符合题意;
    C、原式=,不符合题意;
    D、=,符合题意,
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、85°
    【解析】
    设∠A=∠BDA=x,∠ABD=∠ECD=y,构建方程组即可解决问题.
    【详解】
    解:∵BA=BD,
    ∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,
    则有,
    解得x=85°,
    故答案为85°.
    【点睛】
    本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    14、.
    【解析】
    待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.
    【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:
    ∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.
    设正方形的边长为b,则b2=9,解得b=3.

    ∵正方形的中心在原点O,∴直线AB的解析式为:x=2.
    ∵点P(2a,a)在直线AB上,∴2a=2,解得a=3.∴P(2,3).
    ∵点P在反比例函数(k>0)的图象上,∴k=2×3=2.
    ∴此反比例函数的解析式为:.
    15、60π
    【解析】
    圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.
    解:圆锥的侧面积=π×6×10=60πcm1.
    16、或
    【解析】
    试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.

    考点:翻折变换(折叠问题).
    17、
    【解析】
    根据,,得出,利用相似三角形的性质解答即可.
    【详解】
    ∵,,
    ∴,
    ∴,即,
    ∴,
    ∵,
    ∴,
    故答案为:
    【点睛】
    本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
    18、4a(x﹣y)(x+y)
    【解析】
    首先提取公因式4a,再利用平方差公式分解因式即可.
    【详解】
    4ax2-4ay2=4a(x2-y2)
    =4a(x-y)(x+y).
    故答案为4a(x-y)(x+y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、6×10+4=82 48×52+4
    【解析】
    (1)根据题目中的式子的变化规律可以解答本题;
    (2)根据题目中的式子的变化规律可以解答本题;
    (3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.
    【详解】
    解:(1)由题目中的式子可得,
    第⑥个等式:6×10+4=82,
    故答案为6×10+4=82;
    (2)由题意可得,
    48×52+4=502,
    故答案为48×52+4;
    (3)第n个等式是:n×(n+4)+4=(n+2)2,
    证明:∵n×(n+4)+4
    =n2+4n+4
    =(n+2)2,
    ∴n×(n+4)+4=(n+2)2成立.
    【点睛】
    本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.
    20、(1)见解析;(2)y=4﹣x+(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4﹣.
    【解析】
    (1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;
    (2)先判断出△BEG∽△CFE进而得出CF=
    ,即可得出结论;
    (3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;
    ②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.
    【详解】
    (1)如图1,延长FE交AB的延长线于F',

    ∵点E是BC的中点,
    ∴BE=CE=2,
    ∵四边形ABCD是正方形,
    ∴AB∥CD,
    ∴∠F'=∠CFE,
    在△BEF'和△CEF中,

    ∴△BEF'≌△CEF,
    ∴BF'=CF,EF'=EF,
    ∵∠GEF=90°,
    ∴GF'=GF,
    ∴∠BGE=∠EGF,
    ∵∠GBE=∠GEF=90°,
    ∴△GBE∽△GEF;
    (2)∵∠FEG=90°,
    ∴∠BEG+∠CEF=90°,
    ∵∠BEG+∠BGE=90°,
    ∴∠BGE=∠CEF,
    ∵∠EBG=∠C=90°,
    ∴△BEG∽△CFE,
    ∴,
    由(1)知,BE=CE=2,
    ∵AG=x,
    ∴BG=4﹣x,
    ∴,
    ∴CF=,
    由(1)知,BF'=CF=,
    由(1)知,GF'=GF=y,
    ∴y=GF'=BG+BF'=4﹣x+
    当CF=4时,即:=4,
    ∴x=3,(0≤x≤3),
    即:y关于x的函数表达式为y=4﹣x+(0≤x≤3);
    (3)∵AC是正方形ABCD的对角线,
    ∴∠BAC=∠BCA=45°,
    ∵△AGQ与△CEP相似,
    ∴①△AGQ∽△CEP,
    ∴∠AGQ=∠CEP,
    由(2)知,∠CEP=∠BGE,
    ∴∠AGQ=∠BGE,
    由(1)知,∠BGE=∠FGE,
    ∴∠AGQ=∠BGQ=∠FGE,
    ∴∠AGQ+∠BGQ+∠FGE=180°,
    ∴∠BGE=60°,
    ∴∠BEG=30°,
    在Rt△BEG中,BE=2,
    ∴BG=,
    ∴AG=AB﹣BG=4﹣,
    ②△AGQ∽△CPE,
    ∴∠AQG=∠CEP,
    ∵∠CEP=∠BGE=∠FGE,
    ∴∠AQG=∠FGE,
    ∴EG∥AC,
    ∴△BEG∽△BCA,
    ∴,
    ∴,
    ∴BG=2,
    ∴AG=AB﹣BG=2,
    即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.
    【点睛】
    本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.
    21、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
    【解析】
    (1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
    (2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
    【详解】
    (1)利用表格得出函数关系是一次函数关系:
    设y1=kx+b,

    解得:
    ∴y1=20x+540,
    利用图象得出函数关系是一次函数关系:
    设y2=ax+c,

    解得:
    ∴y2=10x+1.
    (2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
    =(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
    =﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
    ∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
    去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
    =(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
    =( x﹣29)2,(10≤x≤12,且x取整数),
    ∵10≤x≤12时,∴当x=10时,w最大=361(万元),
    ∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
    【点睛】
    此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.
    22、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;
    (4).
    【解析】
    (1)认真读题,找到题目中的相关信息量,列表统计即可;
    (2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;
    (3)根据图表信息写出一个符合条件的信息即可;
    (4)利用树状图确定求解概率.
    【详解】
    (1)统计表如下:
    2017年新能源汽车各类型车型销量情况(单位:万辆)
    类型
    纯电动
    混合动力
    总计
    新能源乘用车
    46.8
    11.1
    57.9
    新能源商用车
    18.4
    1.4
    19.8
    (2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,
    纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,
    补全图形如下:

    (3)总销量越高,其个人购买量越大.
    (4)画树状图如下:

    ∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,
    ∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.
    【点睛】
    此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.
    23、(1)详见解析;(2)
    【解析】
    (1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;
    (2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.
    【详解】
    (1)连接OD,

    ∵OB=OD,
    ∴∠B=∠ODB,
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∵DF⊥AC,
    ∴OD⊥DF,
    ∴DF是⊙O的切线;
    (2)连接BE,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∵AB=AC,AC=3AE,
    ∴AB=3AE,CE=4AE,
    ∴BE=,
    在RT△BEC中,tanC=.
    24、详见解析.
    【解析】
    先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AD=DC,
    ∵E、F分别是AB、BC边的中点,
    ∴AE=ED=CF=DF.
    又∠D=∠D,
    ∴△ADF≌△CDE(SAS).
    ∴∠DAF=∠DCE,∠AFD=∠CED.
    ∴∠AEG=∠CFG.
    在△AEG和△CFG中

    ∴△AEG≌△CFG(ASA).
    ∴AG=CG.
    【点睛】
    本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
    25、(1)见解析;(2)70°;(3)1.
    【解析】
    (1)先根据等边对等角得出∠B=∠D,即可得出结论;
    (2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
    (3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
    【详解】
    (1)∵AB=AD,
    ∴∠B=∠D,
    ∵∠B=∠C,
    ∴∠C=∠D;
    (2)∵四边形ABEF是圆内接四边形,
    ∴∠DFE=∠B,
    由(1)知,∠B=∠D,
    ∴∠D=∠DFE,
    ∵∠BEF=140°=∠D+∠DFE=2∠D,
    ∴∠D=70°,
    由(1)知,∠C=∠D,
    ∴∠C=70°;
    (3)如图,由(2)知,∠D=∠DFE,
    ∴EF=DE,
    连接AE,OC,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∴BE=DE,
    ∴BE=EF=2,
    在Rt△ABE中,tanB==3,
    ∴AE=3BE=6,根据勾股定理得,AB=,
    ∴OA=OC=AB=,
    ∵点C是 的中点,
    ∴ ,
    ∴∠AOC=90°,
    ∴AC=OA=2,
    ∵,
    ∴∠CAG=∠CEA,
    ∵∠ACG=∠ECA,
    ∴△ACG∽△ECA,
    ∴,
    ∴CE•CG=AC2=1.

    【点睛】
    本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
    26、(1)四;(2)见解析;(3) .
    【解析】
    (1)比较两个折线统计图,找出满足题意的调查次数即可;
    (2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;
    (3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.
    【详解】
    解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率;
    故答案为四;
    (2)补全折线统计图,如图所示:

    (3)根据题意得:×27.15%=,
    则全国森林面积可以达到万公顷,
    故答案为.
    【点睛】
    此题考查了折线统计图,弄清题中的数据是解本题的关键.
    27、(1)(2)详见解析;(3).
    【解析】
    (1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.
    【详解】
    经过测量,时,y值为
    根据题意,画出函数图象如下图:

    根据图象,可以发现,y的取值范围为:,

    故答案为.
    【点睛】
    本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.

    相关试卷

    天津市津南区名校2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份天津市津南区名校2021-2022学年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了下列运算正确的是,下面调查方式中,合适的是,下列运算,结果正确的是等内容,欢迎下载使用。

    河北省邯郸市名校2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份河北省邯郸市名校2021-2022学年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了下列计算正确的是,计算3的结果是,在平面直角坐标系中,将点P,二次函数y=等内容,欢迎下载使用。

    2021-2022学年山东省邹城市达标名校中考考前最后一卷数学试卷含解析:

    这是一份2021-2022学年山东省邹城市达标名校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程的根的情况是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map